
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Understanding Type Changes in Java
Ameya Ketkar

Oregon State University
ketkara@oregonstate.edu

Nikolaos Tsantalis
Concordia University

tsantalis@cse.concordia.ca

Danny Dig
University of Colorado, Boulders

danny.dig@colorado.edu

ABSTRACT

Developers frequently change the type of a program element and
update all its references for performance, security, concurrency,
library migration, or better maintainability. Despite type changes
being a common program transformation, it is the least automated
and the least studied. With this knowledge gap, researchers miss
opportunities to improve the state of the art in automation for
software evolution, tool builders do not invest resources where
automation is most needed, language and library designers can-
not make informed decisions when introducing new types, and
developers fail to use common practices when changing types. To
fill this gap, we present the first large-scale and most fine-grained
empirical study on type changes in Java. We develop state-of-the-art
tools to statically mine 297,543 type changes and their subsequent
code adaptations from a diverse corpus of 129 Java projects con-
taining 416,652 commits. With this rich dataset we answer research
questions about the practice of type changes. Among others, we
found that type changes are actually more common than renamings,
but the current research and tools for type changes are inadequate.
Based on our extensive and reliable data, we present actionable,
empirically-justified implications.

1 INTRODUCTION

A type change is a common program transformation that de-
velopers perform for several reasons: library migration [2, 42,
72] (e.g., org.apache.commons.logging.Log→org.slf4j.Logger), API
updates [17, 21] (e.g., Listing 1), performance [25, 29, 30]
(e.g., String→StringBuilder), abstraction [73] (e.g., ArrayList→List),
collection properties [26, 27] (e.g., LinkedList→Deque), concur-
rency [24] (e.g., HashMap→ConcurrentHashMap), security [28] (e.g.,
Random→SecureRandom), and maintainability [20] (e.g., String→Path).
To perform a type change, developers (i) change the declared type
of an element (variable, method or field) and then (ii) adapt the
code referring to this element to the API of the new type.

Listing 1: Type Change example

− SimpleDateFormat formatter= new SimpleDateFormat("yyyy");
+ DateTimeFormatter formatter= DateTimeFormatter.ofPattern ("yyyy");
− Date d = formatter . parse (dateAsString) ;
+ LocalDate d = LocalDate.parse (dateAsString , formatter) ;

In contrast to refactorings that are heavily automated by all popular
IDEs [5, 6, 31, 40], developers perform the vast majority of type

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

changes manually. Ideally, type changes should be automated in a
similar way as a developer renames a program element in an IDE,
although we recognize that it is a far more challenging problem.
The first step to advance the science and tooling for automating
type change is to thoroughly understand its practice.

Most of the prior work studied type changes in the context of
other evolution tasks such as API updates [17, 21, 23] and library
migration [2, 42, 72]. However, there is a gap in understanding type
changes in the general context. This gap in knowledge negatively
impacts four audiences:

(1) Researchers do not have a deep understanding of type changes
and the role they play in software evolution. Thus, they might not
fully understand and support higher level tasks, such as automated
program repair [11, 51] that are composed from type changes.
(2) Tool builders do not have an insight into the practice of
type changes. Thus, they (i) are not aware if the type changes
they automated [31, 40, 41, 43, 73] are representative of the ones
commonly applied in practice, (ii) fail to identify new opportunities
for developing automation techniques.
(3) Language and Library Designers continuously evolve the
types their clients use. However, designers are not aware of what
types are commonly used and how the clients adapt to new types.
Without such knowledge they cannot make informed decisions on
how to improve or introduce new types.
(4) Developers miss educational opportunities about common
practices applied when changing types in other projects, which
could benefit their own projects.

To fill this gap, in this paper we present the first longitudinal,
large-scale, and most fine-grained empirical study on type changes
performed in practice. We analyze the commit histories of 129 large,
mature, and diverse Java projects hosted on GitHub. To do this,
we developed novel tools, which efficiently and accurately mined
416,652 commits and detected 297,543 instances of type changes.
We thoroughly evaluated our tools and they have 99.7% precision
and 94.8% recall in detecting type changes. To advance the science
and tools for type change automation, we use this rich and reliable
dataset to answer six research questions:

RQ1 How common are type changes? We found 35% more instances
of type changes than renames. Given that type changes are so
common, it is worth to investigate how they can be automated.
RQ2 What are the characteristics of the program elements whose type
changed? We found that 41.6% of the type changes are performed
upon public program elements that could break the code. In addition,
developers frequently change between Internal types. The current
tool support for such changes is non-existent.
RQ3 What are the edit patterns performed to adapt the refer-
ences? Developers often adapt to the primary type change by
performing a secondary type change. For example, in Listing 1

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

type change SimpleDateFormat→DateTimeFormatter triggers a sec-
ondary type change Date→LocalDate. However, current techniques
cannot infer mappings for such cascading type changes.
RQ4 What is the relationship between the source and target types?
Among others, we found that in 73% of type changes the types
are not related by inheritance. In contrast, most of the current
IDEs automate type changes for types related by inheritance (e.g.,
Replace Supertype where Possible [40, 43, 73]). This reveals another
important blind spot in the current tooling.
RQ5 Are type changes applied globally or locally? In 62% of cases
developers perform type changes locally. In contrast, the current
tools [36, 41, 43, 55, 73] perform a global migration in the entire
project. This shows that the tool builders do not invest resources
where automation is most needed.
RQ6 What are the most commonly applied type changes? From our
entire corpus, we filter type changes that developers perform in at
least two different projects. We found that these 1,452 type changes
represent 2% of all type change patterns, yet they are responsible
for 43% of all type change instances. Tool builders should prioritize
automating these popular type changes. Developers and educators
can learn from these common practices.

Our findings have actionable implications for several audiences.
Among others, they (i) advance our understanding of type changes
which helps our community improve the science and tools for soft-
ware evolution in general and specifically type change automation,
(ii) help tool designers comprehend the struggles developers face
when performing type changes, (iii) provide feedback to language
and API designers when introducing new types, (iv) identify com-
mon practices for developers to perform type changes effectively,
and (v) assist educators in teaching software evolution.

This paper makes the following contributions:
Questions: To the best of our knowledge, this is the first large-
scale and most fine-grained (at commit level) empirical study of
type changes in Java. We answer six research questions using a
corpus of 297,543 type changes. We believe this makes our findings
representative.
Tools: We developed novel tools to efficiently detect type changes
from a corpus of 416,652 commits. We also manually validated our
tools and show they have high precision (99.7%) and recall (94.8%).
To help our community advance the science and practice of type
changes, we make these tools and the collected data available at [8].
Implications: We present an actionable, empirically justified set of
implications of our findings from the perspective of four audiences:
Researchers, Tool Builders, Language Designers, and Developers.

2 RESEARCH METHODOLOGY

In the rest of the paper we refer to the tuple <SourceType,TargetType>
as a Type Change Pattern (TCP). A Type Change Instance (TCI) is
applying a TCP on a program element (i.e., variable, parameter, field,
method declaration) in a given commit and adapting its references.

2.1 Subject Systems

Our corpus consists of 416,652 commits from 129 large, mature and
diverse Java projects, used by other researchers [48] to understand
language constructs in Java. This corpus [48] is shown to be very di-
verse, from the perspective of LOC, age, commits, and contributors.

This ensures our study is representative. It is also large enough to
comprehensively answer our research questions. The complete list
of projects is available online1.

In this study, we consider all commits in the epoch January 1,
2015 – June 26, 2019, because researchers observed an increasing
trend in the adoption of Java 8 features after 2015. Java 8 introduced
new APIs like FunctionalInterface, Stream, Optional and enhanced
the Time, Collection, Concurrency, IO and Math APIs. Thus, we use
these particular projects and their commits in this particular epoch,
because it allows us to collect and study type changes involving the
new (≥Java 8) built-in Java types. We excluded all merge commits,
as done in other studies [69], to avoid having duplicate reports of
the same type changes.

2.2 Static Analysis of Source Code History

2.2.1 Challenges: Most refactoring detection tools [22, 62, 78]
take as input two fully built versions of a software system that
contain binding information for all named code entities, linked
across all library dependencies. However, a recent study [75] shows
that only 38% of the change history of software systems can be suc-
cessfully compiled. This is a serious limitation for performing our
longitudinal type change study in the commit history of projects. It
poses a threat to the external validity of our empirical study, since
only a small number of project versions can be compiled success-
fully for extracting type changes. Since the majority of versions
cannot be compiled, we would not be able to retrieve fine-grained
details of the types (e.g., the methods and fields declared, super
types), thus making it challenging to understand the characteristics
of the types involved in a type change. Moreover, even if we built
38% of the commits in the project history this would be extremely
time and resource consuming, preventing our study from scaling
beyond a few thousand commits.

We overcome these challenges for performing our fine-grained
and large-scale study in two ways. First, we extended the state-
of-the-art refactoring detection tool, RefactoringMiner [74], to
accurately and efficiently detect type changes at commit-level. We
built upon RefactoringMiner, because it has been shown to have
a superior accuracy and faster execution time [74] than competitive
tools also operating at commit-level, such as RefDiff [70]. Second,
we created a novel tool, TypeFactMiner, which accurately and
efficiently retrieves detailed information about the types involved
in the type change, without requiring to build the software system.

2.2.2 Detecting TCIs: Detecting accurately a TCI is not straight-
forward, as these changes can get easily obfuscated by the other
changes (i.e., overlapping refactorings) in a commit, where methods
and classes containing the TCI get moved, renamed or removed.
For this purpose, we extend RefactoringMiner [74] to detect 4
kinds of type changes, namely (i) Change Variable Type, (ii) Change
Parameter Type, (iii) Change Return Type, and (iv) Change Field Type.
RefactoringMiner uses a state-of-the-art code matching algorithm
to match classes, methods and statements inside method bodies,
and accurately detect refactorings at commit level. It also records
AST node replacements when matching two statements, such as

1http://changetype.s3-website.us-east-2.amazonaws.com/docs/P/projects.html

2

http://changetype.s3-website.us-east-2.amazonaws.com/docs/P/projects.html

Table 1: Precision and recall of our extended version of

RefactoringMiner

Refactoring Type TP FP FN Precision Recall

Change Parameter Type 596 1 35 99.8% 94.5%
Change Return Type 386 2 14 99.5% 96.5%
Change Variable Type 649 2 42 99.7% 93.9%
Change Field Type 212 1 10 99.5% 95.5%

Overall 1843 6 101 99.7% 94.8%

type replacements, which we utilize to infer the aforementioned
type change kinds.

To evaluate the precision and recall of RefactoringMiner, we
extended the oracle used in [74], which contains true refactor-
ing instances found in 536 commits from 185 open-source GitHub
projects, with instances of the four type change kinds. To com-
pute precision, the first two authors manually validated 1843 TCIs
reported by RefactoringMiner. Most of the cases were straight-
forward, and thus were validated individually, but some challenging
cases were inspected by both authors to reach an agreement. To
compute recall, we need to find all true instances for the 4 type
change kinds. We followed the same approach as in [74] by execut-
ing a second tool, namely GumTree [32], and considering as the
ground truth the union of the true positives reported by Refac-
toringMiner and GumTree. GumTree takes as input two abstract
syntax trees (e.g., Java compilation units) and produces the short-
est possible edit script to convert one tree to another. We used all
Update edit operations on types to extract TCIs and report them in
the same format used by RefactoringMiner. Table 1 shows the
number of true positives (TP), false positives (FP), and false nega-
tives (FN) detected/missed by RefactoringMiner. Based on these
results, we conclude that our extension of RefactoringMiner has
an almost perfect precision and a very high recall (ranging between
94 and 96.5%) in the detection of TCIs. Thus, our results in Section
3 are reliable.

2.2.3 Detecting the adaptations of references: Refactoring-
Miner analyzes the matched statements referring to a certain vari-
able to increase the precision in the detection of variable-related
refactorings, such as variable renames. We use these references,
to understand how developers adapt the statements referring to
the variable/parameter/field whose type changed. For Change Lo-
cal Variable Type, Change Parameter Type, and Change Field Type,
RefactoringMiner reports all matched statements within the vari-
able’s scope referring to the variable/parameter/field on which the
TCI was performed. While for Change Return Type, it returns all
matched return statements inside the corresponding method’s body.

If these matched statements are not identical, Refactoring-
Miner reports a set of AST node replacements, which if applied
upon the statement in the parent commit would make it identical to
the matched statement in the child commit. Using these AST node
replacements, we extract the 11 most common Edit Patterns (RQ3)
performed to adapt the statements referencing a variable whose
type changed. RefactoringMiner reported 532,366 matched state-
ments for 297,543 mined TCIs, creating a large data set of real world
edit actions performed to adapt the references in a type change.

2.2.4 Qualifying Type Changes: Analyzing only the syntactic
difference of AST Type nodes is not enough for correctly detect-
ing type changes. For instance, when a TCI qualifies the declared
type (e.g., Optional<String> → java.util.Optional<String>) there is
no actual type change. In such cases, it is important to know the
qualified name of the type before and after the TCI is applied. If
Optional was bound to java.util.Optional, there is no type change.
But if Optional was bound to com.google.common.base.Optional, then
there is a type change.

Moreover, to record accurately the type changes that are more
commonly performed (RQ6) and their characteristics (RQ2), we
need to know the fully-qualified types that changed when a TCI
was performed. For example, if the type change is List→Optional,
depending upon the context (i.e., import declarations) where
the types are used, List could correspond to java.util.List or
io.vavr.List and Optional could correspond to java.util.Optional

or com.google.common.base.Optional. Finally, knowing further details
about these types, such as the fields and methods they declare, or
their super types, would allow us to do an in-depth investigation
of the relations between the changed types.

However, there are certain challenges in extracting the qualified
types, without building the commit: (1) we have an incomplete
source code of the project, because we analyze only the modi-
fied/added/deleted java files in a commit, (2) we do not have the
source code of the types declared in external libraries. To mitigate
these challenges we developed a novel tool TypeFactMiner,
which efficiently and accurately infers the fully qualified name of
the type to which a variable declaration type is bound.

Collecting Type Bindings from commit history: At the core
of TypeFactMiner are heuristics, which reason about the import
statements, package structure, and the types declared in the entire
project, similar to the ones discussed by Dagenais et al. [18]. To
represent the types declarations, TypeFactMiner uses Type Fact
Graphs (TFG), recently proposed by Ketkar et al. [43]. These are
abstract semantic graphs that capture each declared class/inter-
face/enum, the qualified signature of methods/fields it declares, and
the local variables/parameters declared inside methods. For the
oldest commit, which contains at least one Java file, we map all
existing type declarations to a TFG. For the subsequent commits,
we incrementally update this TFG by analyzing only the added,
removed, moved, renamed and modified files. This optimization
allows us to scale our fine-grained study to hundreds of thousands
of commits. The TFG representation allows us to infer transitive
inheritance or composition relationships between types (RQ4).

Collecting Type Bindings from external libraries: A type
change often involves types that are declared in the standard
Java library (e.g., java.lang.String) or third party libraries (e.g.,
org.slf4j.Logger). For this purpose, TypeFactMiner analyzes the
bytecode of the project’s library dependencies to extract infor-
mation for the publicly visible type declarations (classes/inter-
faces/enums). For the types declared in JDK, TypeFactMiner anal-
yses the jars contained in the openjdk-8 release. For external depen-
dencies, TypeFactMiner fetches the corresponding jar files for the
dependencies required by the project at each commit. Since a project
can contain multiple pom.xml files (for each module) with dependen-
cies amongst them, TypeFactMiner generates an effective-pom [4]

3

at each commit and parses this file to identify the external depen-
dencies. It then connects all external type bindings to the nodes in
the TFG of the analyzed project according to their usage.

The validity of the answers to our research questions relies upon
how accurately TypeFactMiner infers the fully qualified names
of the types. To compute the precision of TypeFactMiner, we
create a golden standard, based on the qualified names returned
by the Eclipse JDT compiler. However, to obtain these qualified
names one will have to build the commits, which is time consuming
because each commit might require a different build tool version,
Java version, and build command arguments. This prevented us
from randomly sampling commits from our dataset. So, we selected
4 projects, namely guava, javaparser, error-prone and CoreNLP and
automated the process to build each commit (and its parent) that
contained a TCI. We were able to build successfully 467 commits
that contained 4715 TCIs. For the program elements involved in the
TCIs, we obtained the qualified types from Eclipse JDT compiler,
which we use as the golden standard. We found that TypeFact-
Miner correctly inferred the qualified names for the types involved
in 4652 TCIs (i.e., 98.7% precision).

Out of 428,270 TCIs found in 40,865 commits, TypeFactMiner
filtered out 130,727 TCIs, where (i) the corresponding types were
simply renamed or moved to another package within the examined
project (i.e., an internal Rename/Move Type refactoring triggered
the type change) (ii) no actual type change happened (i.e., a non-
qualified type changed to qualified and vice-versa), leading to a total
of 297,543 true TCIs. The efficient and accurate tools we created
and validated allow us to collect extensive and reliable results, to
empirically justify our implications.

3 RESULTS

3.1 RQ1: How common are type changes?

To provide some insight about how commonly developers perform
type changes, we compare this practice with another commonly
applied source code transformation, namely the renaming of identi-
fiers (i.e., Rename refactoring) [7, 53]. Such a comparison is feasible,
because both type change and rename can be performed on the
same kind of program elements, i.e., local variables, parameters,
fields, and method declarations. All these program elements have a
name and a type (return type in the case of method declarations).
Thus, it is possible to make a direct comparison between the num-
ber of type changes and renames for the same kind of program
elements to understand which practice is more common. Morever,
RefactoringMiner detects rename refactorings with an average
precision of 99% and recall of 91% [74], which are very close to the
average precision/recall values reported in Table 1 for type changes,
allowing for a fair comparison of the two practices.

Table 2 shows the number of type changes and renames on vari-
ables, parameters, fields, and methods that RefactoringMiner
detected in 95,576 commits. As we can see in Table 2, type changes
are around 50% more populous than renames on variables, parame-
ters and fields, while return type changes are slightlymore populous
than method renames. Moreover, we observed that 297,543 type
changes occur in 40,865 commits, while 219,356 renames occur in
46,699 commits, i.e., the density of type changes is higher (7.3 per
commit) than that of renames (4.7 per commit).

Table 2: Mined Source Code Transformations

Variable Parameter Field Method Total

Type Change 83,393 93,229 48,279 72,642 297,543
Rename 53,416 63,612 30,852 71,476 219,356
∆ Percentage +56.1% +46.6% +56.5% +1.6% +35.6%�

�
�
�

RQ1 Conclusion: Type changes are more commonly and fre-
quently performed than renames. In comparison to renaming,
there is negligible tool support and research for type changes.

3.2 RQ2: What are the characteristics of the

program elements whose type changed?

To answer this question, we studied various characteristics of the
program elements involved in TCIs.We explore characteristics, such
as (i) kind: field, method or variable, (ii) visibility: public, private,
protected or package, (iii) AST Type node: simple, primitive, array
or parameterized and (iv) namespace: internal, standard Java library,
or third-party library.

Assume project p has n commits, and TCI (e, i) is a type change
instance on program element e in commit i , and x is a value for
characteristic y of program elements, we define:
proportion(p,x) =

∑n
i=1 | {TCI (e,i) | e has x value for characteristic y } |∑n
i=1 | {TCI (e,i) | e has any value for characteristic y } |

Further, assume that elements(x ,y, i) is the set of all program
elements having value x for characteristic y in the modified files
of commit i , regardless of whether their type changed or not, we
define:
coverage(p,x) =

∑n
i=1 | {TCI (e,i) | e has x value for characteristic y } |∑n

i=1 |elements(x,y,i) |
Only studying the proportions of the different values a character-

istic can take (e.g., the visibility characteristic takes values public,
private, protected), may result in misleading findings, because it
does not take into account the underlying population distribution.
For example, by studying proportions we could find that most TCIs
are performed on public elements, just because there are more
public elements in the source code of the examined projects. There-
fore we study the coverage of the different values a characteristic
can take, with respect to all program elements having the same
value for that characteristic (whose type did or did not change).
The project-level distributions for the proportion and coverage of
the different values of a characteristic are shown as Violin plots. To
assess if there is a statistical difference among these distributions,
we perform the Kruskal-Wallis test (the result of the test is shown
on top of each Violin plot). A p-value ≤ 0.05 rejects the null hypoth-
esis that the medians of the distributions are equal. To compare
two distributions with visibly close medians, we report p-values
obtained by performing the pair-wise post-hoc Dunn’s test.

10
2

10
1

Field

Parameter

LocalVariable

Return

p-value=6.45e-19 H(2)=8.78e+01

Mean
Median

Figure 1: Project-level distribution of type change coverage

per program element kind

3.2.1 Program element kind: The scope of the element on
which a type change is applied determines the impact the change

4

has upon the program. Transforming a field, method return type or
method parameters affects the API of the program, while transform-
ing local variables affects the body of a single method only [53].
Table 2 shows that the largest proportion of type change affects
method parameters, followed by local variables. However, Figure 1
shows that the median coverage of performing Change Field Type is
the largest. Our results are in congruence with the results obtained
by Negara et. al [54] who surveyed 420 developers, and ranked
Change Field Type as the most relevant and applicable transforma-
tion that they perform. They also report that Change Field Type is
the most highly desired feature in IDEs.

3.2.2 Program element visibility: If a type change affects the
signature of a package visible method, a developer should update
the call sites of this method within the same package. However,
if this method is public visible, a developer should update the call
sites of this method in the entire program, but more importantly
this type change could introduce backward incompatibility for the
clients of the library. Figure 2 shows the proportion and coverage
for the access levels - public, private, protected and package.

0.0 0.2 0.4 0.6 0.8

public

private

protected

package

p-value=1.17e-72 H(2)=3.37e+02

Mean
Median

(a) Proportion of type change instances

10
2

10
1

private

protected

package

public

p-value=2.06e-03 H(2)=1.47e+01

Mean
Median

(b) Coverage of type change instances

Figure 2: Project-level distribution per visibility kind

Figure 2a shows that type changes are most commonly applied
on public program elements. However, in Figure 2b the coverage
of type changes on public elements is lower than private elements
(p-value=0.0013). This result shows that although the raw number
of type changes on private elements is less than the number of
type changes on public elements, developers tend to change more
often the types of private elements compared to public ones. This
indicates that developers are more cautious when performing type
changes on public elements, possibly taking into account backward
incompatibility issues.

Researchers [17, 21] have thoroughly studied the impact of dif-
ferent kind of changes on software evolution. Cossette et al. [17]
categorize type change as a hard to automate breaking change.
Dietrich et al. [21] categorize a change based on binary and source
code incompatibility. We analyze the type changes that are per-
formed on public elements and observe that 14.2% introduce binary
but no source incompatibility, while the remaining introduce both.
Below we report the occurrences of type changes applied on public

elements based on the proposed categories in [21]:

(1) Binary and Source Incompatible: We found 106,329 TCIs
(35.8%) that can potentially introduce breaking changes.
(2) Binary Incompatible but Source Compatible: This interest-
ing phenomenon appears in Java programs when the code compiles,
but results in a runtime failure, due to mismatch of rules between
compiler and JVM. We found the following instances in our corpus:
method return type replaced by subtype (4,249), method parameter
type replaced by supertype (6,437), primitive narrowing of return type
(1,373), wrapping and unwrapping of primitive parameter and return
types (1,663), and primitive widening of method parameters (3,258).

0.0 0.2 0.4 0.6 0.8

 Update Simple
(String to URI)

 Update Type Arguments(List <File> to List <Path>)

 Update Container(List <T> to Set <T>)

 Primitive-> Simple(int to UserId)

 Update Primitive
(int to long)

p-value=4.27e-80 H(2)=3.76e+02

Mean
Median

(a) Proportion of type change instances

10
4

10
3

10
2

10
1

 Update Type Arguments

 Update Simple

 Update Container

 Primitive-> Simple

 Update Primitive

p-value=5.86e-65 H(2)=3.06e+02

Mean
Median

(b) Coverage of type change instances

Figure 3: Project-level distribution per AST Type node kind

3.2.3 Program element AST Type node: Java developers have
to explicitly define the type for all declared methods and variables.
Java 8 allows nine kinds of syntactic structures to express the de-
clared type of elements [39]. For example, Simple (String), Parame-
terized (List<Integer>), Primitive (int), Array (int[]).

According to Figure 3a, Simple Types are more commonly
changed than other AST Type nodes. However, in Figure 3b, we
can observe that the coverage of changing the Type Arguments
of parameterized types is the most (p-value=4.09 × 10−32).
Changing the Type Arguments of parameterized types is a more
complex task than changing Simple Types, because there are
additional type changes that propagate through the parameter-
ized container. For example, in Listing 2 to perform the change
IgniteBiTuple<String,AtomicLong>→IgniteBiTuple<String,LongAdder>

one would have to propagate the type changes to the call sites of
method Map.Entry.getValue(), because IgniteBiTuple implements
the Map.Entry interface. Propagating such changes requires
inter-procedural points-to and escape analysis, which is not
supported by any current tool automating type changes.
Listing 2: Updating the argument of a parameterized type

− IgniteBiTuple<String , AtomicLong> m = getTuple();
+ IgniteBiTuple <String , LongAdder> m = getTuple();
− AtomicLong l = m.getValue () ;
+ LongAdder l = m.getValue () ;

3.2.4 Program element namespace: We categorize program
elements based on the relative location of the source and target
types with respect to the project under analysis. We find the fully
qualified name of each type using TypeFactMiner, and label it as:
(i) Internal (type declared in the project), (ii) Jdk (type declared in

5

the standard Java library), or (iii) External (type declared in a third
party library). We assume that developers can perform more easily
type changes involving Internal than External types, as they are
more familiar with the types defined internally in the project, or can
ask co-developers in the project who have more expertise on these
internal types. On the other hand, type changes involving External
types are more difficult to perform, as developers need to study
external documentation, which might be outdated or unavailable,
or refer to Q&A forums for more information.

For Simple Type changes, we qualify the types before
and after the change. For Type Argument changes to pa-
rameterized types, we qualify the changed type arguments
(e.g., List<File>→List<Path>, the source type is java.io.File

and the target type is java.nio.file.Path). For composite
type changes (e.g., List<Integer>→Set<Long>), we qualify the
base type changes (e.g., java.util.List→java.util.Set and
java.lang.Integer→java.lang.Long).

0.0 0.2 0.4 0.6 0.8

 Internal To Internal
org. apache. ignite. GridCache ->

org. apache. ignite. IgniteCache

 Jdk To Jdk
java. util. List ->

java. util. Set

 Jdk To Internal
java. io. File ->

org. geoserver. resource. Resource

 Internal To Jdk
org. apache. ignite. UuId ->

java. io. File

 External To External
org. apache. common. logging. Log ->

org. slf4j. Logger

p-value=7.01e-63 H(2)=2.96e+02

Mean
Median

(a) Proportion of type change instances

10
4

10
3

10
2

10
1

10
0

10
1

 Internal To Internal

 External To External

 Jdk To Jdk

 Jdk To Internal

 Internal To Jdk

p-value=2.37e-50 H(2)=2.38e+02

Mean
Median

(b) Coverage of type change instances

Figure 4: Project-level distribution per namespace kind

Figure 4a shows that developers most commonly change
Internal→Internal and Jdk→Jdk types. Type changes between
External types are rarely performed (5.14%), of which only 27.8%
have source and target types defined in different external libraries.
This confirms the findings of Teyton et al. [72], who conclude that
third-party library migration is not a common activity.

However, in Figure 4b, we can observe that the median of
External→External type change coverage is greater than that
of Jdk→Jdk (p-value=5.3 × 10−35). In addition, the mean of
External→External type change coverage is the largest. To fur-
ther understand this distribution, we identify outliers using the
Q3 + 1.5 × IQR rule. We investigate the TCIs performed in
21 outlier projects and find that developers perform hundreds
of such External→External TCIs. For example, we found 1902
org.apache.common.Log→org.slf4j.Logger TCIs in 8 projects for li-
brary migration and 1254 TCIs in 7 projects to update from
google.protobuf-2 to google.protobuf-3. The results also show the
importance of inferring the type-mappings to perform a library
migration or update. Migration mapping mining techniques [3, 19,

64, 77] have focused on mining method-level mappings and have
missed the type-mappings across the libraries.�

�

�

�
RQ2 Conclusion: (i) 41.6% of type changes affect public el-
ements, introducing binary and/or source incompatibilities.
(ii) Updating Type Arguments of parameterized types has the
largest type change coverage; however, the current state-of-the-
art tools do not support the changes that need to be propagated.

3.3 RQ3: What are the edit patterns performed

to adapt the references?

Table 3: Mined edit patterns

Description %TCI Example

Rename variable 54.85% String filepath→ File file

Rename Method call 7.09% applyAsLong→applyAsDouble

Modify arguments 2.70% apply(id)→apply(usr.getId())

Modify Method call 25.69%
f.exists()→Files.exist(p)

s.length()→s.get().length()

Replace with Method call 0.82% new Long(5)→Long.valueOf(5)

(Un)Wrap argument 0.99% read(p)→read(Paths.get(p))

Update Literal 0.51% 3→3L or "1"→"1.0"
(Un)Cast 0.13% 5/7→(double)5/7

Cascade same types 12.06% See Listing 2
Cascade different types 5.81% See Listing 1

Assignment↔Call 0.26% b = true↔b.set(true)

From the 297,543 TCIs mined, we found that developers applied
some edit pattern to adapt the references in 130,331 TCIs (43.8%). To
further shed light on these cases, in Table 3 we report the percent-
age of TCIs for different edit patterns. We observe that for 54.85%
of TCIs with edited references, developers rename the program
element whose type changed (e.g., String filepath → File file).
This makes sense as developers try to use variable names that are
intention-revealing. This makes it easy to understand and maintain
the program because the names reflect the intention of the new type.
Arnaoudova et al. [7] were the first to observe this qualitatively,
but we are the first to measure this quantitatively.

The second most applied pattern to adapt references is to adapt
method calls by updating the name, modifying the call chain struc-
ture or modifying the receiver or the arguments. This requires
inferring method-mapping between the source and target types
and the type-mapping between the return type and arguments of
these methods. This result motivates the work of researchers that
infer API mappings [64].

The third most commonly applied pattern to adapt refer-
ences is cascade type changes, which involves additional type
changes to other places in the code. For example, in Listing 1 the
type change SimpleDateFormat→DateTimeFormatter applied to vari-
able formatter triggers another type change Date→LocalDate (i.e.,
cascade type change) applied to variable d. We found that in 12.06%
of TCIs developers perform a cascade type change, which is similar
to the original type change, while in 5.81% of TCIs the cascade
type change is different from the original. To perform such cascade
type changes, the replacement rules must cover all potential type
changes between the source and target type. This requirement was

6

initially discovered by Li et al. [46], but our study is the first one to
empirically show that this happens often in practice.�
�

�
�

RQ3 Conclusion: In 54.85% type changes, developers re-
name the variables to reflect the changed type. In 17.87% of
type changes developers perform a cascade type change involv-
ing the same or different types.

3.4 RQ4: What is the relationship between the

source and target types?

To answer this question, we check whether the source and target
types are related by (i) inheritance i.e., the types have a subtype or
supertype relationship, or the types share a common super type
(other than java.lang.Object), or (ii) composition i.e., one type is
composed of the other.

We found that in 7.5% of the TCIs the types are composition-
related. In 27.08% of the TCIs the types have an inheritance re-
lationship. The tools [31, 41, 73] for performing type changes
have exclusively focused on parent-child relationships (e.g., Use
Supertype Refactoring). However, we found that 44.56% of the
inheritance-related type changes actually have a sibling relation-
ship (e.g., List→Set). This highlights a blind spot in the current
tooling for 85.1% type changes, where the source and target types
are siblings, composition-related, or have no relationship.

Composition and Inheritance are two ways of designing types
based onwhat they are orwhat they do. The seminal work on Design
Patterns by the Gang of Four [34] often advocates composition over
inheritance. We are interested to find the effect of this design choice
when performing a type change. Thus, we define:
Adapted Statement Ratio = |Adapted Statements |

|Referring Statements |

Composition Sibling Parent Child
0.00

0.25

0.50

0.75

1.00
p-value=0 H(2)=2.94e+03

Mean
Median

Figure 5: Distribution of adapted statement ratio

Referring Statements is the set of matched AST statement pairs
within the scope of the variable on which a type change was ap-
plied, that reference this variable. These statements can be consid-
ered as the statements belonging in the def-use chain [59] of the
variable whose type changed. Adapted Statements is the subset of
Referring Statements, where an edit was performed to adapt to the
type change. This ratio is (i) non-negative and normalized within
the interval [0, 1], (ii) has true null value of 0, when no edits are
performed (e.g., ArrayList→List, where both types share a similar
API), (iii) has a maximum value of 1 when all Referring Statements
are edited (e.g., java.io.File→org.neo4j.io.DatabaseLayout, where
the two types share no common API).

Figure 5 shows the distribution of adapted statement ratio corre-
sponding to TCIs where the source and target types have a composi-
tion, sibling, and parent-child relationship, respectively. The violin
plots show that the median adapted statement ratio is higher when
the source and target types have a composition relationship than
when they have an inheritance relationship (sibling or parent-child).

Moreover, the median adapted statement ratio is higher when the
source and target types have a sibling relationship than when they
have a parent-child relationship.
Table 4: Edit patterns to adapt TCIs grouped by relationship

Edit pattern Composition Sibling Parent-Child

Rename Identifier 77.36% 45.03% 40.9%
Rename Method Call 3.91% 9.9% 6.4%
Modify Method Call 34.26% 30.54% 24.8%
Cascade Type Change 10.28% 19.56% 8.93%

To gain further insight into this, we analyze the edit patterns
applied w.r.t. the relationship of the source and target types. Ta-
ble 4 shows that developers rename identifiers more often when
the source and target types have a composition relationship than a
hierarchical relationship. Since, identifier names represent defined
concepts [63], one possible explanation is that developers assign
names to program elements based on what they represent and not
based on what they do. Performing type change between hierarchi-
cally related types does not change what the element represents
(e.g., ArrayList is a List, whereas List and Set are both Collections),
while this is not always true when types are related by composition
(e.g., File and DatabaseLayout represent different concepts).

Furthermore, developers modify method calls more often
when the source and target types are related by compo-
sition. For example, when neo4j developers performed the
type change File→DatabaseLayout2, they consistently replaced the
references to variables representing directories with getter calls
layout.getDirectory().

Sibling types often provide different methods (e.g., List provides
methods to add and remove an element in a specific index through
methods add(int index, E element) and remove(int index), while
Set does not offer such functionality). They also provide similar
methods through their common supertype. Table 4 shows that,
modifying or renaming a method invocation is a common edit
pattern, when adapting to a type change between sibling types.
In fact, previous researchers who proposed techniques to perform
such type changes, identify one-to-one and one-to-many method
mappings to modify or rename method invocations. For example,
Dig et al. [24] replace ConcurrentHashMap with HashMap, Tip et al. [73]
replace Vectorwith ArrayList, Li et al. [46, 61] replace HashTablewith
HashMap, and Ketkar et al. [43] replace Function with UnaryOperator.�

�

�

�
RQ4Conclusion: In 65.42% of type changes, the source and the
target types have no hierarchical or composition relationship.
Despite the advantages of using composition over inheritance,
when it comes to changing types, composition requires more
adaptations than inheritance.

3.5 RQ5: How common are type migrations?

Are type changes applied globally in the form of a type migra-
tion, or selectively on specific parts of the code? How often do
developers perform type migration? What are the most common
migrations? Answering such questions is important for software
evolution researchers and tool builders to better support the com-
mon development practices.

2http://changetype.s3-website.us-east-2.amazonaws.com/docs/P/neo4j/tci_
project3860.html

7

http://changetype.s3-website.us-east-2.amazonaws.com/docs/P/neo4j/tci_project3860.html
http://changetype.s3-website.us-east-2.amazonaws.com/docs/P/neo4j/tci_project3860.html

To compute the percentage of migration for a given SourceType

in a project, we need to count the instances where SourceType has
been changed to any TargetType, and the instances where SourceType
has not been changed in the commit history of the project. We
decided to study the migration phenomenon on a SourceType level,
instead of a type change level (SourceType→TargetType), because we
found that in many cases developers change a given SourceType

to multiple TargetTypes depending on the context. For example,
in project google/closure-compiler Guava type ImmutableEntry has
been changed in some places to BiMapEntry and in other places to
Java’s Map.Entry depending on desired property.

Assume project p has n commits (1 ≤ n ≤ |all commits in p |),
where each of these commits contains at least one occurrence of
a TCI involving SourceType t . Further, TCI (e, i) is a TCI involving
SourceType t on program element e in commit i , and elements(t , i)
is the set of all program elements having type t in all Java files of
commit i , we define:
coverage(p, t) =

∑n−1
i=0 | {TCI (e,i)} | + | {TCI (e,n) | e has SourceType t } |∑n−1

i=0 | {TCI (e,i)} | + |elements(t,n) |
In the formula above, elements(t ,n) represents the program ele-

ments having type t in commit n of project p. If all these elements
are involved in a TCI in the last commit where SourceType t has been
changed, then SourceType t is migrated (i.e., coverage(p, t) = 100%).

0.0 0.2 0.4 0.6 0.8 1.0

Internal

External

Jdk

p-value=0 H(2)=2.54e+03

Mean
Median

Figure 6: Project-level distribution of type change coverage

Figure 6 shows the distribution of type change coverage for three
categories of SourceType, namely Internal, External and Jdk types.
We can clearly observe that Jdk types are more selectively changed,
while Internal and External types tend to be more globally changed
(median = 0.51 and 0.34 respectively). In addition, Internal types are
more globally changed than External types (p-value = 3.6 × 10−32)
with relatively more migrations, i.e., developers migrate Internal
types (45.2%) more than External (38.3%) and Jdk (16.1%) types.
This highlights a major blind spot in previous research on type
migration [43, 46, 73] that focuses mainly upon migration between
Jdk types (e.g. Vector → ArrayList or HashTable → HashMap).

We found that 16 projects migrated FinalizerThread from Jdk
to FutureTask from Jdk, TrustedFuture and InterruptibleTask from
Guava, or LeaderSwitcher from neo4j. Moreover, 8 projects migrated
GeneratedMessage from google/protobuf to GeneratedMessageV3. The
complete list of migrations3 can be found at our website [8].�
�

�
�

RQ5 Conclusion: In 61.71% of cases developers perform
type changes in a selective rather than amigration fashion. Type
Migration is most commonly performed on Internal types.

3.6 RQ6: What are the most commonly applied

type changes?

We group all 297,543 TCIs by the tuple <SourceType, TargetType>,
expressing a TCP. For instance, in Listing 1 there are two

3http://changetype.s3-website.us-east-2.amazonaws.com/docs/P/Migrations.html

type changes, namely <SimpleDateFormat, DateTimeFormatter> and
<Date, LocalDate>, and in Listing 2 there is one type change
<AtomicLong, LongAdder>. We found a total of 50,640 distinct TCPs.
To find the most popular TCPs from our dataset, we select those
that were performed in at least 2 projects. This results in 1,452
TCPs4 that collectively account for 64,310 TCIs.

We found that 70.2% of the popular TCPs involve Jdk types.
The 10 most popular TCPs involve (i) primitive types: int, long,
void, boolean, and (ii) sibling types with a common supertype:
java.util.List, java.util.Set, java.util.Map. Other popular TCPs
involve types declared in java.util, java.lang, java.time and java.io.
None of these TCPs are supported by the current tools.

We further analyse the popular TCPs and find that 40% of these
involve Internal types, while the rest involve External types. This
result is surprising, as we did not expect to find any TCPs involving
Internal types, because they would get filtered out by the “at least
two projects” predicate. On further investigation, we found that
TCPs involving Internal types for a given project, affect depen-
dent projects that need to adapt to the External type change. For
example, the developers of apache/hbase changed the return type
of 22 public methods from HRegion to Region. When the projects
apache/hadoop, phoenixframework/phoenix bumped their hbase de-
pendency to version 1.1.3, they adapted the invocations of these
methods by performing the same type change (HRegion→Region).
Such scenarios occur when library developers introduce a breaking
change and all the clients adapt to that change when they update
their dependencies. The results highlight a blind spot in the current
research that has primarily focused on library migration and up-
date [3, 17, 21, 23, 42, 72] and ignored the majority of type changes
that occur intra-project.

To provide an overview of the reasons for performing these pop-
ular TCPs, we studied the related research literature and developer
documentation, and report 10 common reasons5 along with some
representative TCPs, extracted from our empirical study, for each
reason category.�
�

�
�

RQ6 Conclusion: 2.27% of the most popular type change pat-
terns shared across projects account for 43% of type change
instances. None of the top-10 most popular type change pat-
terns are automated by current tools.

4 IMPLICATIONS

We present actionable, empirically-justified implications for four
audiences: (i) researchers, (ii) tool builders and IDE designers, (iii)
language and library designers, and (iv) developers and educators.

4.1 Researchers

R1. Foundations for Software Evolution (RQ1, 2 & 6) We
found that type changes are more frequently applied than renames,
but they are less studied. Previous studies on program transfor-
mations focused on refactorings like renames, moves and extrac-
tions [52, 53, 69]. We also observe that 41.6% of the type changes
can potentially introduce breaking changes. Moreover, we find
empirical evidence showing that when a library developer intro-
duces a breaking change by performing a type change, the clients
4http://changetype.s3-website.us-east-2.amazonaws.com/docs/P/A/Popular.html
5http://changetype.s3-website.us-east-2.amazonaws.com/docs/KnownTC.html

8

http://changetype.s3-website.us-east-2.amazonaws.com/docs/P/Migrations.html
http://changetype.s3-website.us-east-2.amazonaws.com/docs/P/A/Popular.html
http://changetype.s3-website.us-east-2.amazonaws.com/docs/KnownTC.html

adapt to it by performing similar type changes. Our dataset [8]
contains fine-grained information, including links to the exact
lines of code in GitHub commits, where developers performed
type changes and adapted the references to the program ele-
ments whose type changed. Such detailed information can help
researchers to better design longitudinal studies to understand
software evolution [13, 14], to perform more accurate API up-
dates [17, 21, 23, 33], library migrations [2, 3, 42, 72], and automated
program repairs [51, 67] that involve type changes.
R2. Naming Conventions (RQ3) In 54.85% of TCIs, the program
element gets renamed too (e.g., File file → Path filePath). Our
results also show that developers tend to rename elements more
often when the source and target types have a composition or sib-
ling relationship. Previous researchers [7] who studied renaming in
depth, missed the opportunity to explore the impact of type changes
on the renaming of program elements. The tools we developed can
be used by researchers to further explore this relationship. Re-
searchers [1, 10, 76] have developed techniques, which recommend
an element’s name based on its usage context. These techniques
could be applied whenever developers perform type changes.
R3. Infer Type Mappings (RQ2 & 3) Our findings show that
cascade type change is a frequently performed edit action, when
developers adapt the references of variables whose type changed.
This edit action applies a secondary type change, often involving
different types than the primary type change. Moreover we observe
that 41.6% type changes are applied on public elements, introduc-
ing binary and source code incompatibilities. Thus, in order to
perform safe API updates or migrations, it is imperative for the
current techniques to infer type mapping for performing the cas-
cade type changes, in addition to inferring method mappings for
primary type change.
R4. Support Parameterized Types (RQ2) The performed
type changes frequently update the argument of a parameterized
type. Current techniques [43, 46, 73] can modify the Parameterized
type container (Vector<String> → List<String>) or replace Param-
eterized types with Simple types (Function<Integer, Integer> →

IntUnaryOperator). However, they cannot adapt the program cor-
rectly when the type argument changes (e.g., Map<String,Integer>
→ Map<String, Long>). Performing this type change correctly re-
quires inter-procedural points-to and escape analysis, which is not
supported by any of the current techniques.
R5. Generalize Techniques for Sibling Types (RQ1 & 5)

The most popular type changes are performed between sib-
ling types that share a common super type (e.g., java.util.List
→ java.util.Set). These types represent similar concepts with
some differences in their properties. Previously, researchers
have solved specific instances of these type changes, such as
HashMap→ConcurrentHashMap [24], Vector → ArrayList [73], replace
HashTable→HashMap [46, 61]. However, these techniques hardcode
the semantic differences between the sibling types. Our data high-
lights a need for more general techniques to encode the differences
between the properties of the two types.
R6. Crowdsource Type Changes (RQ1 & 6) We found that
type changes are highly repetitive, within individual commits (7.3
TCIs per commit) but also across multiple commits from distinct
projects. This confirms the findings of others on the repetitive-
ness of code changes [54, 56, 57, 66, 67], and calls for new research

on crowdsourcing type change mappings from previously applied
type changes. Our dataset [8] could be used as a starting point.
4.2 Tool Builders and IDE Designers

T1. Automate Reference Adaptation (fromRQ1) Type change
is a very commonly applied transformation. This highlights that
IDEs should provide support for advanced composite refactorings,
which perform a type change and adapt the code referring to the
variable whose type changed. While current IDEs support refac-
torings like Change Method Signature [31] or type migration [41],
these tools only update the declaration of the method or variables,
but do not adapt the references. The adaptation process requires
identifying (i) the method mappings between the source and target
types to update the method call sites, and (ii) replacement rules
that cover all cascade type changes (Listing 1).

However, better tool support for type changes is desperately
needed. A survey of 420 developers [54] ranked type change as the
most highly desired feature (among commonly applied transforma-
tions) for IDE automation. Moreover, Nishizono et al. [60] found
that among other source code maintenance tasks, Change Variable
Type requires the longest comprehension time.
T2. Support Selective Type Changes (From RQ5) All existing
tools that perform type changes [41, 43, 46, 73] follow a migration
approach, where the type change patterns are exhaustively applied
within a particular scope. However, we observed that in 61.71%
of type changes, developers apply them selectively on an element,
based on the context of code. The existing techniques should give
the user more fine-grained control (other than specifying the scope)
on where a type change should be applied. For example, developers
perform the type change String→URL [20] judiciously, rather than
eradicating all usages of type String in the project.
T3. Support Internal Project Type Changes (RQ2) Develop-
ers most often perform custom type changes between types which
are declared in the project itself (i.e., Internal). The most appropri-
ate techniques for performing such custom transformations are
through DSLs [9, 61], however researchers [12] found that text-
based DSLs are awkward to use. More research is needed to make
it easier to express custom type changes.

4.3 Language and Library Designers

L1. Understand Library Usage (All RQs) Language and li-
brary designers continuously evolve types. They enhance ex-
isting types, deprecate old types (e.g., Vector), introduce new
types for new features (e.g., java.util.Optional for handling null

values), or provide alternate types with more features (e.g.,
java.util.Random→java.security.SecureRandom). Our findings, the
accompanying dataset [8], and the tools we developed, can help lan-
guage and library designers to understandwhat types are most com-
monly used, misused, and underused, and how the clients adapt to
new types. Thus, they can make informed and empirically-justified
decisions on how to improve existing features or introduce new
ones.
L2. Adopt Value Types (RQ6) We found 3,747 type changes
which box or unbox primitive types (e.g., int to java.lang.Integer

or java.lang.Boolean to boolean). This practice is widespread in 101
projects from our corpus. The proposed value types feature in
Project Valhalla (JEP 169 [68]) could help eliminate these changes,

9

by enabling developers to abstract over primitive types without the
boxing overhead.

4.4 Software Developers and Educators

D1. Rich Educational Resources (RQ1, 2 & 6)Developers learn
and educators teach new programming constructs through exam-
ples. Robillard and DeLine [65] study what makes large APIs hard
to learn and conclude that one of the important factors is the
lack of usage examples. We provide 50,640 real-world examples
of type changes in 129 large and mature Java projects. Because
developers might need to inspect the entire commit, we provide
link to the exact line of code in the GitHub commits (e.g., see [16]).

5 THREATS TO VALIDITY

(1) Internal Validity The findings of our study depend on the
accuracy of our tools to mine type changes from the commit history
of the projects. We mitigate this threat by validating our tools.
RefactoringMiner detects type changes with a high precision
(99.7%) and recall (94.8%) and TypeFactMiner qualifies the type
name with 98.7% precision. Moreover, the use of RefactoringMiner
makes our analysis immune to the noise created by refactorings
such as extract, rename or move program elements. While the edit
patternswemined capturemost of the adaptations, we acknowledge
that these are not exhaustive. For example, the new Java 8 features
(e.g., Streams, Optional or StringJoiner) dissolve control structures
(e.g., if, for) into a functional-style statement. In the future, we
plan to extend our mining technique to analyse and identify new
patterns from such many-to-one statement mappings.
(2) External Validity We studied 129 projects on GitHub, from a
wide range of application domains, making the results of the study
generalizable to other projects in similar domains. However, a study
of proprietary code-bases might reveal different results.
(3) VerifiabilityWe release [8] all the developed tools, collected
data, and Python scripts used for statistical analysis and generating
the plots of the paper, so that the study is fully reproducible.

6 RELATEDWORK

(1) Empirical studies on type changes. Previous work has stud-
ied type changes from the vantage point of higher-level mainte-
nance and evolution tasks, such as API update and librarymigration,
for decades [15]. Researchers [17, 23] performed retroactive studies
into the presence and nature of the incompatibilities between API
versions. Dietrich et al. [21] studied the risk of introducing runtime
failures due to API updates, and McDonnell et al. [49] and Hora et
al. [38] have studied the API evolution and adoption for the An-
droid and Pharo ecosystems, respectively. Kula et al. [45] who stud-
ied how extensively developers update their libraries, highlighted
that most systems keep their dependencies outdated. Similarly, re-
searchers [42, 72] studied the practice of library migration in the
Java ecosystem. Teyton et al. [72] studied the practice of library
migration in Java to understand how frequently, when, and why
they are performed. Kabinna et al. performed a case study on the
practice of logging library migration [42]. In contrast, we study
the practice of type change as a whole (including Internal and Jdk

changes), by answering six broad research questions. Our longitu-
dinal study of a large corpus helps us gain a deep understanding of
the current gaps in research and tooling for type changes.
(2) Extracting Change Patterns: Numerous approaches have
been developed to infer properties of APIs, intended to guide their
use by developers [64]. Previous work [37, 71, 79] proposed tools,
which analyze the changes applied by library developers and recom-
mend adaptations to the clients, when they update the library ver-
sion. Nguyen et al. [58] proposed advanced graph based techniques,
which assist developers to perform library updates by learning from
examples. Similarly, Kim et al. [44] propose an approach to auto-
matically discover and represent systematic changes as logic rules.
Researchers [3, 35, 77] focus on mining method mappings between
two API versions or libraries and helping clients to adapt the code
to different libraries or versions. Researchers developed tools, such
as LASE [50], Genesis [47] and Refazer [66] that synthesize trans-
formations from examples. Recently, researchers [33, 80] developed
techniques that mine adaptation examples from source code history
and adapt the client code to the API Update. Recently, researchers
proposed advanced tools to mine source code histories of projects
to generate transformations for reasons, such as repairing bugs [11],
removing bad style and performance bugs [67], fixing compilation
errors [51]. These tools often mine transformation patterns which
involve type changes like String→Path, String→StringBuilder, or
ImmutableList→ImmutableSet. In contrast, our study does not ana-
lyze type changes in the context of a particular higher level software
evolution task, but rather investigates all type changes performed
in practice, providing deeper insights to facilitate further research
on software evolution (implications R1, R3 & R6).
(3) Transformation tools performing type-related changes Re-
searchers have developed tools specifically to perform type-related
changes safely, such as a class librarymigration tool which uses type
constraints [9], T2R ultra-large-scale type migration tool for spe-
cializing functional interfaces [43], and SWIN [46] which performs
safe API updates based on Twinning [61]. These tools perform type
migration (i.e., they exhaustively apply a type change in entire code
base) using the changes that the user expresses with a text-based
DSL. While in our study, we try to understand how representative
are the type changes that these tools can perform in the real world.
We uncover some blind spots, so that researchers and tool builders
can make their tools more (i) safe (implications T1, R3 & R4), (ii)
practical and applicable in more contexts (implications R2, T2 &
T3), and (iii) extensible (implications R5 & R6).

7 CONCLUSION

This paper presents a fine-grained empirical study to understand
the type changes performed in 129 open source Java projects. To
perform this study, we created an extensive and reliable dataset of
297,543 type changes. Some of our key surprising findings are:

(1) Type changes are more common than renaming.
(2) To adapt the code, developers often perform secondary cascade

type changes, which are different than the primary type change.
(3) Developers often rename elements, when changing their type.
(4) Type changes between types having a composition relation need

more adaptation effort than those with inheritance relation.
10

(5) Developers more often perform type changes on public program
elements than private, package-private, and protected elements,
introducing potential breaking changes.

(6) Developers most often perform selective type changes, rather
than migrating types in the entire project.

(7) We found that 2% of the 1,452 popular type change patterns we
discovered, account for 43% of all type change instances.

We hope that this paper motivates the community to advance the
science and tooling for type change automation.

REFERENCES

[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting Accurate Method and Class Names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York,
NY, USA, 38–49. https://doi.org/10.1145/2786805.2786849

[2] Hussein Alrubaye, Deema AlShoaibi, Mohamed Wiem Mkaouer, and Ali Ouni.
2019. How Does API Migration Impact Software Quality and Comprehension?
An Empirical Study. (Jul 2019). arXiv:cs.SE/1907.07724

[3] Hussein Alrubaye andMohamedWiemMkaouer. 2018. Automating the Detection
of Third-party Java Library Migration at the Function Level. In Proceedings
of the 28th Annual International Conference on Computer Science and Software
Engineering (CASCON ’18). IBM Corp., Riverton, NJ, USA, 60–71. http://dl.acm.
org/citation.cfm?id=3291291.3291299

[4] Apache. 2019. effective-pom. https://maven.apache.org/plugins/maven-help-
plugin/effective-pom-mojo.html. Accessed: 2019-08-23.

[5] Apache. 2019. Netbeans Refactoring. http://wiki.netbeans.org/Refactoring. Ac-
cessed: 2019-08-23.

[6] Apache. 2019. Visual Studio-Refactor code. https://docs.microsoft.com/en-us/
visualstudio/ide/refactoring-in-visual-studio?view=vs-2019. Accessed: 2019-08-
23.

[7] Venera Arnaoudova, Laleh M. Eshkevari, Massimiliano Di Penta, Rocco Oliveto,
Giuliano Antoniol, and Yann-Gaël Guéhéneuc. 2014. REPENT: Analyzing the
nature of identifier renamings. Software Engineering, IEEE Transactions on 40 (05
2014), 502–532. https://doi.org/10.1109/TSE.2014.2312942

[8] Anonymized authors for double-blind review. 2019. Type Facts Companion web-
site. http://changetype.s3-website.us-east-2.amazonaws.com/docs/. Accessed:
2019-08-23.

[9] Ittai Balaban, Frank Tip, and Robert Fuhrer. 2005. Refactoring Support for Class
Library Migration. In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’05).
ACM, New York, NY, USA, 265–279. https://doi.org/10.1145/1094811.1094832

[10] Rohan Bavishi, Michael Pradel, and Koushik Sen. 2018. Context2Name: A Deep
Learning-Based Approach to Infer Natural Variable Names from Usage Contexts.
(Aug 2018), arXiv:1809.05193 pages. arXiv:cs.SE/1809.05193

[11] Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. 2019. Phoenix: Automated
Data-driven Synthesis of Repairs for Static Analysis Violations. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). ACM,
New York, NY, USA, 613–624. https://doi.org/10.1145/3338906.3338952

[12] Marat Boshernitsan, Susan L. Graham, Susan L. Graham, and Marti A. Hearst.
2007. Aligning Development Tools with the Way Programmers Think About
Code Changes. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’07). ACM, New York, NY, USA, 567–576. https://doi.
org/10.1145/1240624.1240715

[13] Diego Cedrim, Alessandro Garcia, MelinaMongiovi, Rohit Gheyi, Leonardo Sousa,
Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and Alexander Chávez. 2017.
Understanding the Impact of Refactoring on Smells: A Longitudinal Study of 23
Software Projects. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 465–475.
https://doi.org/10.1145/3106237.3106259

[14] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and
Alessandro Garcia. 2017. How Does Refactoring Affect Internal Quality At-
tributes?: A Multi-project Study. In Proceedings of the 31st Brazilian Sympo-
sium on Software Engineering (SBES’17). ACM, New York, NY, USA, 74–83.
https://doi.org/10.1145/3131151.3131171

[15] Chow and Notkin. 1996. Semi-automatic update of applications in response
to library changes. In 1996 Proceedings of International Conference on Software
Maintenance. 359–368. https://doi.org/10.1109/ICSM.1996.565039

[16] Guacamole Client. 2011. commit with type change. https://tinyurl.com/yx2npj8g
Accessed: 23 March 2018.

[17] Bradley E. Cossette and Robert J. Walker. 2012. Seeking the Ground Truth:
A Retroactive Study on the Evolution and Migration of Software Libraries. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering (FSE ’12). ACM, New York, NY, USA, Article 55, 11 pages.
https://doi.org/10.1145/2393596.2393661

[18] Barthélémy Dagenais and Laurie Hendren. 2008. Enabling Static Analysis for
Partial Java Programs. In Proceedings of the 23rd ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applications (OOPSLA ’08).
Association for Computing Machinery, New York, NY, USA, 313–328. https:
//doi.org/10.1145/1449764.1449790

[19] B. Dagenais and M. P. Robillard. 2009. SemDiff: Analysis and recommendation
support for API evolution. In 2009 IEEE 31st International Conference on Software
Engineering. 599–602. https://doi.org/10.1109/ICSE.2009.5070565

[20] Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr. 2018. RefiNym: Using
Names to Refine Types. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 107–117.
https://doi.org/10.1145/3236024.3236042

[21] J. Dietrich, K. Jezek, and P. Brada. 2014. Broken promises: An empirical study into
evolution problems in Java programs caused by library upgrades. In 2014 Software
Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE). IEEE Computer Society, Washington, DC,
USA, 64–73. https://doi.org/10.1109/CSMR-WCRE.2014.6747226

[22] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. 2006. Auto-
mated Detection of Refactorings in Evolving Components. In Proceedings of the
20th European Conference on Object-Oriented Programming (ECOOP’06). Springer-
Verlag, Berlin, Heidelberg, 404–428. https://doi.org/10.1007/11785477_24

[23] Danny Dig and Ralph Johnson. 2006. How Do APIs Evolve&Quest; A Story of
Refactoring: Research Articles. J. Softw. Maint. Evol. 18, 2 (March 2006), 83–107.
https://doi.org/10.1002/smr.v18:2

[24] Danny Dig, John Marrero, and Michael D. Ernst. 2009. Refactoring Sequential
Java Code for Concurrency via Concurrent Libraries. In Proceedings of the 31st
International Conference on Software Engineering (ICSE ’09). IEEE Computer
Society, Washington, DC, USA, 397–407. https://doi.org/10.1109/ICSE.2009.
5070539

[25] Java Platform Documentation. 2019. Autoboxing and unboxing.
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html. Accessed:
2019-06-21.

[26] Java Platform Documentation. 2019. DeQue. https://docs.oracle.com/javase/8/
docs/api/java/util/Deque.html. Accessed: 2019-06-21.

[27] Java Platform Documentation. 2019. LinkedList. https://docs.oracle.com/javase/
8/docs/api/java/util/LinkedList.html. Accessed: 2019-06-21.

[28] Java Platform Documentation. 2019. SecureRandom. https://docs.oracle.com/
javase/8/docs/api/java/security/SecureRandom.html. Accessed: 2019-06-21.

[29] Java Platform Documentation. 2019. StringBuffer.
https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuffer.html Accessed:
2019-06-21.

[30] Java Platform Documentation. 2019. StringBuilder.
https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html.
Accessed: 2019-06-21.

[31] Eclipse. 2019. Refactoring Actions. https://help.eclipse.org/kepler/index.jsp?
topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fref-menu-refactor.htm. Ac-
cessed: 2019-06-21.

[32] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and Accurate Source Code Differencing.
In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering (ASE ’14). ACM, New York, NY, USA, 313–324. https:
//doi.org/10.1145/2642937.2642982

[33] Mattia Fazzini, Qi Xin, and Alessandro Orso. 2019. Automated API-usage Update
for Android Apps. In Proceedings of the 28th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA 2019). ACM, New York, NY, USA,
204–215. https://doi.org/10.1145/3293882.3330571

[34] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional.

[35] Amruta Gokhale, Vinod Ganapathy, and Yogesh Padmanaban. 2013. Inferring
LikelyMappings Between APIs. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 82–91. http:
//dl.acm.org/citation.cfm?id=2486788.2486800

[36] Google. 2011. Error Prone. https://github.com/google/error-prone Accessed: 23
March 2018.

[37] Johannes Henkel and Amer Diwan. 2005. CatchUp!: capturing and replaying
refactorings to support API evolution. In 27th International Conference on Software
Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA. 274–283. https:
//doi.org/10.1145/1062455.1062512

[38] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T. Valente. 2015.
How do developers react to API evolution? The Pharo ecosystem case. In 2015
IEEE International Conference on Software Maintenance and Evolution (ICSME).
251–260. https://doi.org/10.1109/ICSM.2015.7332471

[39] Eclipse JDT. 2019. Type. https://help.eclipse.org/luna/topic/org.eclipse.jdt.doc.
isv/reference/api/org/eclipse/jdt/core/dom/Type.html. Accessed: 2019-06-21.

11

https://doi.org/10.1145/2786805.2786849
http://arxiv.org/abs/cs.SE/1907.07724
http://dl.acm.org/citation.cfm?id=3291291.3291299
http://dl.acm.org/citation.cfm?id=3291291.3291299
https://maven.apache.org/plugins/maven-help-plugin/effective-pom-mojo.html
https://maven.apache.org/plugins/maven-help-plugin/effective-pom-mojo.html
http://wiki.netbeans.org/Refactoring
https://docs.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio?view=vs-2019
https://doi.org/10.1109/TSE.2014.2312942
http://changetype.s3-website.us-east-2.amazonaws.com/docs/
https://doi.org/10.1145/1094811.1094832
http://arxiv.org/abs/cs.SE/1809.05193
https://doi.org/10.1145/3338906.3338952
https://doi.org/10.1145/1240624.1240715
https://doi.org/10.1145/1240624.1240715
https://doi.org/10.1145/3106237.3106259
https://doi.org/10.1145/3131151.3131171
https://doi.org/10.1109/ICSM.1996.565039
https://tinyurl.com/yx2npj8g
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/1449764.1449790
https://doi.org/10.1145/1449764.1449790
https://doi.org/10.1109/ICSE.2009.5070565
https://doi.org/10.1145/3236024.3236042
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1007/11785477_24
https://doi.org/10.1002/smr.v18:2
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1109/ICSE.2009.5070539
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fref-menu-refactor.htm
https://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fref-menu-refactor.htm
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3293882.3330571
http://dl.acm.org/citation.cfm?id=2486788.2486800
http://dl.acm.org/citation.cfm?id=2486788.2486800
https://github.com/google/error-prone
https://doi.org/10.1145/1062455.1062512
https://doi.org/10.1145/1062455.1062512
https://doi.org/10.1109/ICSM.2015.7332471
https://help.eclipse.org/luna/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/Type.html
https://help.eclipse.org/luna/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/Type.html

[40] JetBrains. 2019. IntelliJ - Refactoring Code. https://www.jetbrains.com/help/idea/
refactoring-source-code.html. Accessed: 2019-06-21.

[41] JetBrains. 2019. Type Migration. https://www.jetbrains.com/help/idea/type-
migration.html. Accessed: 2019-06-21.

[42] S. Kabinna, C. Bezemer, W. Shang, and A. E. Hassan. 2016. Logging Library
Migrations: A Case Study for the Apache Software Foundation Projects. In 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR). 154–
164. https://doi.org/10.1109/MSR.2016.025

[43] Ameya Ketkar, Ali Mesbah, Davood Mazinanian, Danny Dig, and Edward Af-
tandilian. 2019. Type Migration in Ultra-large-scale Codebases. In Proceedings of
the 41st International Conference on Software Engineering (ICSE ’19). IEEE Press,
Piscataway, NJ, USA, 1142–1153. https://doi.org/10.1109/ICSE.2019.00117

[44] M. Kim, D. Notkin, D. Grossman, and G. Wilson. 2013. Identifying and Summariz-
ing Systematic Code Changes via Rule Inference. IEEE Transactions on Software
Engineering 39, 1 (Jan 2013), 45–62. https://doi.org/10.1109/TSE.2012.16

[45] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do Developers Update Their Library Dependencies? Empirical Softw.
Engg. 23, 1 (Feb. 2018), 384–417. https://doi.org/10.1007/s10664-017-9521-5

[46] Jun Li, ChenglongWang, Yingfei Xiong, and Zhenjiang Hu. 2015. SWIN: Towards
Type-Safe Java Program Adaptation Between APIs. In Proceedings of the 2015
Workshop on Partial Evaluation and Program Manipulation (PEPM ’15). ACM, New
York, NY, USA, 91–102. https://doi.org/10.1145/2678015.2682534

[47] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of Code
Transforms for Patch Generation. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,
727–739. https://doi.org/10.1145/3106237.3106253

[48] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017.
Understanding the Use of Lambda Expressions in Java. Proc. ACM Program. Lang.
1, OOPSLA, Article 85 (Oct. 2017), 31 pages. https://doi.org/10.1145/3133909

[49] T. McDonnell, B. Ray, and M. Kim. 2013. An Empirical Study of API Stability
and Adoption in the Android Ecosystem. In 2013 IEEE International Conference
on Software Maintenance. 70–79. https://doi.org/10.1109/ICSM.2013.18

[50] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and
Applying Systematic Edits by Learning from Examples. In Proceedings of the 2013
International Conference on Software Engineering (ICSE ’13). IEEE Press, Piscat-
away, NJ, USA, 502–511. http://dl.acm.org/citation.cfm?id=2486788.2486855

[51] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
2019. DeepDelta: Learning to Repair Compilation Errors. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). ACM,
New York, NY, USA, 925–936. https://doi.org/10.1145/3338906.3340455

[52] E. Murphy-Hill, C. Parnin, and A. P. Black. 2012. How We Refactor, and How
We Know It. IEEE Transactions on Software Engineering 38, 1 (Jan 2012), 5–18.
https://doi.org/10.1109/TSE.2011.41

[53] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig.
2013. A Comparative Study of Manual and Automated Refactorings. In ECOOP
2013 – Object-Oriented Programming, Giuseppe Castagna (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 552–576.

[54] Stas Negara, Mihai Codoban, Danny Dig, and Ralph E. Johnson. 2014. Mining
Fine-grained Code Changes to Detect Unknown Change Patterns. In Proceedings
of the 36th International Conference on Software Engineering (ICSE 2014). ACM,
New York, NY, USA, 803–813. https://doi.org/10.1145/2568225.2568317

[55] Netbeans. 2011. Netbeans - Jackpot wiki. http://wiki.netbeans.org/Jackpot
Accessed: 23 March 2018.

[56] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily
Mast, Eli Rademacher, Tien N. Nguyen, and Danny Dig. 2016. API Code Rec-
ommendation Using Statistical Learning from Fine-grained Changes. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE 2016). ACM, New York, NY, USA, 511–522.
https://doi.org/10.1145/2950290.2950333

[57] Hoan Anh Nguyen, Tien N. Nguyen, Danny Dig, Son Nguyen, Hieu Tran, and
Michael Hilton. 2019. Graph-based Mining of In-the-wild, Fine-grained, Semantic
Code Change Patterns. In Proceedings of the 41st International Conference on
Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 819–830. https:
//doi.org/10.1109/ICSE.2019.00089

[58] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Jr., Anh Tuan Nguyen,
Miryung Kim, and Tien N. Nguyen. 2010. A Graph-based Approach to API Usage
Adaptation. SIGPLAN Not. 45, 10 (Oct. 2010), 302–321. https://doi.org/10.1145/
1932682.1869486

[59] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2010. Principles of
Program Analysis. Springer Publishing Company, Incorporated.

[60] K. Nishizono, S. Morisakl, R. Vivanco, and K. Matsumoto. 2011. Source code
comprehension strategies andmetrics to predict comprehension effort in software
maintenance and evolution tasks - an empirical study with industry practitioners.

In 2011 27th IEEE International Conference on Software Maintenance (ICSM). 473–
481. https://doi.org/10.1109/ICSM.2011.6080814

[61] Marius Nita and David Notkin. 2010. Using Twinning to Adapt Programs to
Alternative APIs. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 205–214.
https://doi.org/10.1145/1806799.1806832

[62] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. 2010. Template-based re-
construction of complex refactorings. In 2010 IEEE International Conference on
Software Maintenance. 1–10. https://doi.org/10.1109/ICSM.2010.5609577

[63] Juergen Rilling and Tuomas Klemola. 2003. Identifying Comprehension Bottle-
necks Using Program Slicing and Cognitive Complexity Metrics. In Proceedings
of the 11th IEEE International Workshop on Program Comprehension (IWPC ’03).
IEEE Computer Society, USA, 115.

[64] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. 2013.
Automated API Property Inference Techniques. IEEE Transactions on Software
Engineering 39, 5 (May 2013), 613–637. https://doi.org/10.1109/TSE.2012.63

[65] Martin P. Robillard and Robert Deline. 2011. A Field Study of API Learning
Obstacles. Empirical Softw. Engg. 16, 6 (Dec. 2011), 703âĂŞ732. https://doi.org/
10.1007/s10664-010-9150-8

[66] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning Syntactic
Program Transformations from Examples. In Proceedings of the 39th International
Conference on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA,
404–415. https://doi.org/10.1109/ICSE.2017.44

[67] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and Loris D’Antoni. 2018.
Learning Quick Fixes from Code Repositories. (2018). arXiv:1803.03806 http:
//arxiv.org/abs/1803.03806

[68] John Rose. 2019. Value Objects. https://openjdk.java.net/jeps/169. Accessed:
2019-08-23.

[69] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refac-
tor? Confessions of GitHub Contributors. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE 2016).
ACM, New York, NY, USA, 858–870. https://doi.org/10.1145/2950290.2950305

[70] D. Silva and M. T. Valente. 2017. RefDiff: Detecting Refactorings in Version
Histories. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). 269–279. https://doi.org/10.1109/MSR.2017.14

[71] Kunal Taneja, Danny Dig, and Tao Xie. 2007. Automated Detection of Api Refac-
torings in Libraries. In Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering (ASE ’07). ACM, New York, NY,
USA, 377–380. https://doi.org/10.1145/1321631.1321688

[72] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. 2014. A Study
of Library Migrations in Java. J. Softw. Evol. Process 26, 11 (Nov. 2014), 1030–1052.
https://doi.org/10.1002/smr.1660

[73] Frank Tip, Robert M. Fuhrer, Adam Kieżun, Michael D. Ernst, Ittai Balaban, and
Bjorn De Sutter. 2011. Refactoring Using Type Constraints. ACM Trans. Program.
Lang. Syst. 33, 3, Article 9 (May 2011), 47 pages. https://doi.org/10.1145/1961204.
1961205

[74] Nikolaos Tsantalis, MatinMansouri, LalehM. Eshkevari, DavoodMazinanian, and
DannyDig. 2018. Accurate and Efficient Refactoring Detection in Commit History.
In Proceedings of the 40th International Conference on Software Engineering (ICSE
’18). ACM, New York, NY, USA, 483–494. https://doi.org/10.1145/3180155.3180206

[75] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2017), 11. https://doi.org/10.1002/smr.1838

[76] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recovering
Clear, Natural Identifiers from Obfuscated JS Names. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM,
New York, NY, USA, 683–693. https://doi.org/10.1145/3106237.3106289

[77] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim. 2010.
AURA: AHybrid Approach to Identify Framework Evolution. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE
’10). ACM, New York, NY, USA, 325–334. https://doi.org/10.1145/1806799.1806848

[78] Zhenchang Xing and Eleni Stroulia. 2005. UMLDiff: An Algorithm for Object-
oriented Design Differencing. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’05). ACM, New York, NY,
USA, 54–65. https://doi.org/10.1145/1101908.1101919

[79] Z. Xing and E. Stroulia. 2007. API-Evolution Support with Diff-CatchUp. IEEE
Transactions on Software Engineering 33, 12 (Dec 2007), 818–836. https://doi.org/
10.1109/TSE.2007.70747

[80] Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: Inference and Application
of API Migration Edits. In Proceedings of the 27th International Conference on
Program Comprehension (ICPC ’19). IEEE Press, Piscataway, NJ, USA, 335–346.
https://doi.org/10.1109/ICPC.2019.00052

12

https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/type-migration.html
https://www.jetbrains.com/help/idea/type-migration.html
https://doi.org/10.1109/MSR.2016.025
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1109/TSE.2012.16
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/2678015.2682534
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/3133909
https://doi.org/10.1109/ICSM.2013.18
http://dl.acm.org/citation.cfm?id=2486788.2486855
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1145/2568225.2568317
http://wiki.netbeans.org/Jackpot
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1145/1932682.1869486
https://doi.org/10.1145/1932682.1869486
https://doi.org/10.1109/ICSM.2011.6080814
https://doi.org/10.1145/1806799.1806832
https://doi.org/10.1109/ICSM.2010.5609577
https://doi.org/10.1109/TSE.2012.63
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1109/ICSE.2017.44
http://arxiv.org/abs/1803.03806
http://arxiv.org/abs/1803.03806
http://arxiv.org/abs/1803.03806
https://openjdk.java.net/jeps/169
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1145/1321631.1321688
https://doi.org/10.1002/smr.1660
https://doi.org/10.1145/1961204.1961205
https://doi.org/10.1145/1961204.1961205
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1002/smr.1838
https://doi.org/10.1145/3106237.3106289
https://doi.org/10.1145/1806799.1806848
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1109/ICPC.2019.00052

	Abstract
	1 INTRODUCTION
	2 RESEARCH METHODOLOGY
	2.1 Subject Systems
	2.2 Static Analysis of Source Code History

	3 RESULTS
	3.1 RQ1: How common are type changes?
	3.2 RQ2: What are the characteristics of the program elements whose type changed?
	3.3 RQ3: What are the edit patterns performed to adapt the references?
	3.4 RQ4: What is the relationship between the source and target types?
	3.5 RQ5: How common are type migrations?
	3.6 RQ6: What are the most commonly applied type changes?

	4 IMPLICATIONS
	4.1 Researchers
	4.2 Tool Builders and IDE Designers
	4.3 Language and Library Designers
	4.4 Software Developers and Educators

	5 THREATS TO VALIDITY
	6 RELATED WORK
	7 CONCLUSION
	References

