| 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method protected updateModel(mdl ModelsSequentialComposition<I,O1,O2>, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : ModelsSequentialComposition<I,O1,O2> in class org.apache.ignite.ml.composition.combinators.sequential.TrainersSequentialComposition | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,double[]> to extractor : Vectorizer<K,V,C,double[]> in method protected updateModel(lastLearnedMdl MultilayerPerceptron, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,double[]>) : MultilayerPerceptron in class org.apache.ignite.ml.nn.MLPTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	yExtractor : IgniteBiFunction<K,V,Double> to vectorizer : Vectorizer<K,V,CO,Double> in method public LabelPartitionDataBuilderOnHeap(vectorizer Vectorizer<K,V,CO,Double>) in class org.apache.ignite.ml.structures.partition.LabelPartitionDataBuilderOnHeap | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : ModelsComposition in class org.apache.ignite.ml.composition.boosting.GDBTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : LogisticRegressionModel in class org.apache.ignite.ml.regressions.logistic.LogisticRegressionSGDTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : ANNClassificationModel in class org.apache.ignite.ml.knn.ann.ANNClassificationTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	featureExtractor : IgniteBiFunction<K,V,Vector> to featureExtractor : Vectorizer<K,V,CO,?> in method public createSimpleDataset(upstreamMap Map<K,V>, partitions int, envBuilder LearningEnvironmentBuilder, featureExtractor Vectorizer<K,V,CO,?>) : SimpleDataset<EmptyContext> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public update(mdl ModelsSequentialComposition<I,O1,O2>, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : ModelsSequentialComposition<I,O1,O2> in class org.apache.ignite.ml.composition.combinators.sequential.TrainersSequentialComposition | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl ModelsComposition, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : ModelsComposition in class org.apache.ignite.ml.tree.randomforest.RandomForestTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : ModelsSequentialComposition<I,O1,O2> in class org.apache.ignite.ml.composition.combinators.sequential.TrainersSequentialComposition | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : AdaptableDatasetModel<I,O,IW,OW,M> in class org.apache.ignite.ml.trainers.AdaptableDatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : StackedModel<IS,IA,O,AM> in class org.apache.ignite.ml.composition.stacking.StackedDatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public update(mdl M, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : M in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : IgniteModel<Vector,Double> in class org.apache.ignite.ml.composition.bagging.BaggingTest.CountTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : GaussianNaiveBayesModel in class org.apache.ignite.ml.naivebayes.gaussian.GaussianNaiveBayesTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl LinearRegressionModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : LinearRegressionModel in class org.apache.ignite.ml.regressions.linear.LinearRegressionSGDTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl IgniteModel<Vector,Double>, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : IgniteModel<Vector,Double> in class org.apache.ignite.ml.composition.bagging.BaggingTest.CountTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	featureExtractor : IgniteBiFunction<K,V,Vector> to featureExtractor : Vectorizer<K,V,CO,?> in method public SimpleDatasetDataBuilder(featureExtractor Vectorizer<K,V,CO,?>) in class org.apache.ignite.ml.dataset.primitive.builder.data.SimpleDatasetDataBuilder | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	featureExtractor : IgniteBiFunction<K,V,Vector> to featureExtractor : Vectorizer<K,V,CO,?> in method public createSimpleDataset(ignite Ignite, upstreamCache IgniteCache<K,V>, envBuilder LearningEnvironmentBuilder, partCtxBuilder PartitionContextBuilder<K,V,C>, featureExtractor Vectorizer<K,V,CO,?>) : SimpleDataset<C> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : DecisionTreeNode in class org.apache.ignite.ml.tree.DecisionTree | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,CO,Double> in method public DecisionTreeDataBuilder(extractor Vectorizer<K,V,CO,Double>, buildIdx boolean) in class org.apache.ignite.ml.tree.data.DecisionTreeDataBuilder | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(newMdl MultiClassModel<M>, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : MultiClassModel<M> in class org.apache.ignite.ml.multiclass.OneVsRestTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public BootstrappedDatasetBuilder(extractor Vectorizer<K,V,C,Double>, samplesCnt int, subsampleSize double) in class org.apache.ignite.ml.dataset.impl.bootstrapping.BootstrappedDatasetBuilder | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,double[]> to extractor : Vectorizer<K,V,C,double[]> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,double[]>) : MultilayerPerceptron in class org.apache.ignite.ml.nn.MLPTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : LinearRegressionModel in class org.apache.ignite.ml.regressions.linear.LinearRegressionLSQRTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method protected updateModel(mdl StackedModel<IS,IA,O,AM>, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : StackedModel<IS,IA,O,AM> in class org.apache.ignite.ml.composition.stacking.StackedDatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : GmmModel in class org.apache.ignite.ml.clustering.gmm.GmmTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public updateModel(mdl KNNRegressionModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : KNNRegressionModel in class org.apache.ignite.ml.knn.regression.KNNRegressionTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl KMeansModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : KMeansModel in class org.apache.ignite.ml.clustering.kmeans.KMeansTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public update(mdl BaggedModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : BaggedModel in class org.apache.ignite.ml.composition.bagging.BaggedTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	featureExtractor : IgniteBiFunction<K,V,Vector> to featureExtractor : Vectorizer<K,V,CO,?> in method public createSimpleDataset(ignite Ignite, upstreamCache IgniteCache<K,V>, featureExtractor Vectorizer<K,V,CO,?>) : SimpleDataset<EmptyContext> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	trainingSet : IgniteCache<Integer,Point> to trainingSet : IgniteCache<Integer,LabeledVector<Double>> in method private generatePoints(trainingSet IgniteCache<Integer,LabeledVector<Double>>) : void in class org.apache.ignite.examples.ml.tree.DecisionTreeRegressionTrainerExample | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	datasetBuilder : LocalDatasetBuilder<double[],Double> to datasetBuilder : LocalDatasetBuilder<Integer,LabeledVector<Double>> in method public createChecker(factory ConvergenceCheckerFactory, datasetBuilder LocalDatasetBuilder<Integer,LabeledVector<Double>>) : ConvergenceChecker<Integer,LabeledVector<Double>,Integer> in class org.apache.ignite.ml.composition.boosting.convergence.ConvergenceCheckerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	externalLbToInternalMapping : IgniteFunction<Double,Double> to externalLbToInternalMapping : IgniteFunction in method public ConvergenceCheckerStub(sampleSize long, externalLbToInternalMapping IgniteFunction, loss Loss, datasetBuilder DatasetBuilder, vectorizer Vectorizer<K,V,C,Double>, precision double) in class org.apache.ignite.ml.composition.boosting.convergence.simple.ConvergenceCheckerStub | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	xExtractor : IgniteBiFunction<K,V,Vector> to vectorizer : Vectorizer<K,V,CO,Double> in method public LabeledDatasetPartitionDataBuilderOnHeap(vectorizer Vectorizer<K,V,CO,Double>) in class org.apache.ignite.ml.structures.partition.LabeledDatasetPartitionDataBuilderOnHeap | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	featureExtractor : IgniteBiFunction<K,V,Vector> to featureExtractor : Vectorizer<K,V,CO,?> in method public createSimpleDataset(ignite Ignite, upstreamCache IgniteCache<K,V>, envBuilder LearningEnvironmentBuilder, featureExtractor Vectorizer<K,V,CO,?>) : SimpleDataset<EmptyContext> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	featureExtractor : IgniteBiFunction<K,V,Vector> to vectorizer : Vectorizer<K,V,C,Double> in method public create(sampleSize long, externalLbToInternalMapping IgniteFunction<Double,Double>, loss Loss, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : ConvergenceChecker<K,V,C> in class org.apache.ignite.ml.composition.boosting.convergence.simple.ConvergenceCheckerStubFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	featureExtractor : IgniteBiFunction<K,V,Vector> to featureExtractor : Vectorizer<K,V,CO,?> in method public createSimpleDataset(datasetBuilder DatasetBuilder<K,V>, envBuilder LearningEnvironmentBuilder, partCtxBuilder PartitionContextBuilder<K,V,C>, featureExtractor Vectorizer<K,V,CO,?>) : SimpleDataset<C> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl LinearRegressionModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : LinearRegressionModel in class org.apache.ignite.ml.regressions.linear.LinearRegressionLSQRTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public Builder(extractor Vectorizer<K,V,C,Double>, countOfComponents int) in class org.apache.ignite.ml.clustering.gmm.GmmPartitionData.Builder | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : KNNRegressionModel in class org.apache.ignite.ml.knn.regression.KNNRegressionTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method protected updateModel(mdl IgniteModel<I,List<O>>, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : IgniteModel<I,List<O>> in class org.apache.ignite.ml.composition.combinators.parallel.TrainersParallelComposition | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to vectorizer : Vectorizer<K,V,C,L> in method public fit(ignite Ignite, cache IgniteCache<K,V>, vectorizer Vectorizer<K,V,C,L>) : M in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method protected updateModel(mdl BaggedModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : BaggedModel in class org.apache.ignite.ml.composition.bagging.BaggedTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : IgniteModel<I,List<O>> in class org.apache.ignite.ml.composition.combinators.parallel.TrainersParallelComposition | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public update(mdl IgniteModel<I,List<O>>, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : IgniteModel<I,List<O>> in class org.apache.ignite.ml.composition.combinators.parallel.TrainersParallelComposition | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl ANNClassificationModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : ANNClassificationModel in class org.apache.ignite.ml.knn.ann.ANNClassificationTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : ModelsComposition in class org.apache.ignite.ml.tree.randomforest.RandomForestTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : KMeansModel in class org.apache.ignite.ml.clustering.kmeans.KMeansTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	datasetBuilder : DatasetBuilder<K,V> to datasetBuilder : DatasetBuilder in method public ConvergenceCheckerStub(sampleSize long, externalLbToInternalMapping IgniteFunction, loss Loss, datasetBuilder DatasetBuilder, vectorizer Vectorizer<K,V,C,Double>, precision double) in class org.apache.ignite.ml.composition.boosting.convergence.simple.ConvergenceCheckerStub | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : MultiClassModel<M> in class org.apache.ignite.ml.multiclass.OneVsRestTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method protected updateModel(mdl AdaptableDatasetModel<I,O,IW,OW,M>, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : AdaptableDatasetModel<I,O,IW,OW,M> in class org.apache.ignite.ml.trainers.AdaptableDatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : BaggedModel in class org.apache.ignite.ml.composition.bagging.BaggedTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	lbExtractor : IgniteBiFunction<K,V,Double> to vectorizer : Vectorizer<K,V,C,Double> in method private extractClassLabels(datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : List<Double> in class org.apache.ignite.ml.multiclass.OneVsRestTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : ModelsSequentialComposition<I,O,O> in class org.apache.ignite.ml.composition.combinators.sequential.TrainersSequentialComposition.SameTrainersSequentialComposition | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : DiscreteNaiveBayesModel in class org.apache.ignite.ml.naivebayes.discrete.DiscreteNaiveBayesTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	featureExtractor : IgniteBiFunction<K,V,Vector> to featureExtractor : Vectorizer<K,V,CO,?> in method public createSimpleDataset(upstreamMap Map<K,V>, partitions int, envBuilder LearningEnvironmentBuilder, partCtxBuilder PartitionContextBuilder<K,V,C>, featureExtractor Vectorizer<K,V,CO,?>) : SimpleDataset<C> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl DiscreteNaiveBayesModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : DiscreteNaiveBayesModel in class org.apache.ignite.ml.naivebayes.discrete.DiscreteNaiveBayesTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	featureExtractor : IgniteBiFunction<K,V,Vector> to featureExtractor : Vectorizer<K,V,CO,?> in method public createSimpleDataset(datasetBuilder DatasetBuilder<K,V>, envBuilder LearningEnvironmentBuilder, featureExtractor Vectorizer<K,V,CO,?>) : SimpleDataset<EmptyContext> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl SVMLinearClassificationModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : SVMLinearClassificationModel in class org.apache.ignite.ml.svm.SVMLinearClassificationTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public update(mdl StackedModel<IS,IA,O,AM>, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,L>) : StackedModel<IS,IA,O,AM> in class org.apache.ignite.ml.composition.stacking.StackedDatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl GmmModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : GmmModel in class org.apache.ignite.ml.clustering.gmm.GmmTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl DecisionTreeNode, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : DecisionTreeNode in class org.apache.ignite.ml.tree.DecisionTree | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : KNNClassificationModel in class org.apache.ignite.ml.knn.classification.KNNClassificationTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : SVMLinearClassificationModel in class org.apache.ignite.ml.svm.SVMLinearClassificationTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method public fit(datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : LinearRegressionModel in class org.apache.ignite.ml.regressions.linear.LinearRegressionSGDTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl LogisticRegressionModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : LogisticRegressionModel in class org.apache.ignite.ml.regressions.logistic.LogisticRegressionSGDTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl GaussianNaiveBayesModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : GaussianNaiveBayesModel in class org.apache.ignite.ml.naivebayes.gaussian.GaussianNaiveBayesTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl KNNClassificationModel, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : KNNClassificationModel in class org.apache.ignite.ml.knn.classification.KNNClassificationTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Parameter Type	extractor : FeatureLabelExtractor<K,V,Double> to extractor : Vectorizer<K,V,C,Double> in method protected updateModel(mdl ModelsComposition, datasetBuilder DatasetBuilder<K,V>, extractor Vectorizer<K,V,C,Double>) : ModelsComposition in class org.apache.ignite.ml.composition.boosting.GDBTrainer | 
                                From | 
                                To | 
                            
                            
                            
                            
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method public create(sampleSize long, externalLbToInternalMapping IgniteFunction<Double,Double>, loss Loss, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : ConvergenceChecker<K,V,C> in class org.apache.ignite.ml.composition.boosting.convergence.mean.MeanAbsValueConvergenceCheckerFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method public create(sampleSize long, externalLbToInternalMapping IgniteFunction<Double,Double>, loss Loss, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : ConvergenceChecker<K,V,C> in class org.apache.ignite.ml.composition.boosting.convergence.median.MedianOfMedianConvergenceCheckerFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method public update(mdlToUpdate GDBTrainer.GDBModel, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : List<IgniteModel<Vector,Double>> in class org.apache.ignite.ml.tree.boosting.GDBOnTreesLearningStrategy | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,double[]>] to vectorizer : Vectorizer<K,V,CO,double[]> in method public createSimpleLabeledDataset(ignite Ignite, envBuilder LearningEnvironmentBuilder, upstreamCache IgniteCache<K,V>, vectorizer Vectorizer<K,V,CO,double[]>) : SimpleLabeledDataset<EmptyContext> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method public buildDataset(envBuilder LearningEnvironmentBuilder, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : Dataset<EmptyContext,LabeledVectorSet<Double,LabeledVector>> in class org.apache.ignite.ml.knn.KNNUtils | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method private getCentroids(vectorizer Vectorizer<K,V,C,Double>, datasetBuilder DatasetBuilder<K,V>) : List<Vector> in class org.apache.ignite.ml.knn.ann.ANNClassificationTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,double[]>] to vectorizer : Vectorizer<K,V,CO,double[]> in method public createSimpleLabeledDataset(upstreamMap Map<K,V>, partitions int, envBuilder LearningEnvironmentBuilder, partCtxBuilder PartitionContextBuilder<K,V,C>, vectorizer Vectorizer<K,V,CO,double[]>) : SimpleLabeledDataset<C> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,L>] to vectorizer : Vectorizer<K,V,C,L> in method public fit(data Map<K,V>, parts int, vectorizer Vectorizer<K,V,C,L>) : M in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,double[]>] to vectorizer : Vectorizer<K,V,CO,double[]> in method public createSimpleLabeledDataset(datasetBuilder DatasetBuilder<K,V>, envBuilder LearningEnvironmentBuilder, vectorizer Vectorizer<K,V,CO,double[]>) : SimpleLabeledDataset<EmptyContext> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,L>] to vectorizer : Vectorizer<K,V,C,L> in method public update(mdl M, data Map<K,V>, parts int, vectorizer Vectorizer<K,V,C,L>) : M in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method public ConvergenceCheckerStub(sampleSize long, externalLbToInternalMapping IgniteFunction, loss Loss, datasetBuilder DatasetBuilder, vectorizer Vectorizer<K,V,C,Double>, precision double) in class org.apache.ignite.ml.composition.boosting.convergence.simple.ConvergenceCheckerStub | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,double[]>] to vectorizer : Vectorizer<K,V,CO,double[]> in method public createSimpleLabeledDataset(ignite Ignite, upstreamCache IgniteCache<K,V>, envBuilder LearningEnvironmentBuilder, partCtxBuilder PartitionContextBuilder<K,V,C>, vectorizer Vectorizer<K,V,CO,double[]>) : SimpleLabeledDataset<C> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[fExtr : IgniteBiFunction<K,V,Vector>, lbExtr : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method public MedianOfMedianConvergenceChecker(sampleSize long, lblMapping IgniteFunction<Double,Double>, loss Loss, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>, precision double) in class org.apache.ignite.ml.composition.boosting.convergence.median.MedianOfMedianConvergenceChecker | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,L>] to vectorizer : Vectorizer<K,V,C,L> in method public update(mdl M, data Map<K,V>, filter IgniteBiPredicate<K,V>, parts int, vectorizer Vectorizer<K,V,C,L>) : M in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,L>] to vectorizer : Vectorizer<K,V,C,L> in method public fit(ignite Ignite, cache IgniteCache<K,V>, filter IgniteBiPredicate<K,V>, vectorizer Vectorizer<K,V,C,L>) : M in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,double[]>] to vectorizer : Vectorizer<K,V,CO,double[]> in method public createSimpleLabeledDataset(upstreamMap Map<K,V>, envBuilder LearningEnvironmentBuilder, partitions int, vectorizer Vectorizer<K,V,CO,double[]>) : SimpleLabeledDataset<EmptyContext> in class org.apache.ignite.ml.dataset.DatasetFactory | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method public MeanAbsValueConvergenceChecker(sampleSize long, externalLbToInternalMapping IgniteFunction<Double,Double>, loss Loss, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>, precision double) in class org.apache.ignite.ml.composition.boosting.convergence.mean.MeanAbsValueConvergenceChecker | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method public update(mdlToUpdate GDBTrainer.GDBModel, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : List<IgniteModel<Vector,Double>> in class org.apache.ignite.ml.composition.boosting.GDBLearningStrategy | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,L>] to vectorizer : Vectorizer<K,V,C,L> in method public update(mdl M, ignite Ignite, cache IgniteCache<K,V>, filter IgniteBiPredicate<K,V>, vectorizer Vectorizer<K,V,C,L>) : M in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,L>] to vectorizer : Vectorizer<K,V,C,L> in method public fit(data Map<K,V>, filter IgniteBiPredicate<K,V>, parts int, vectorizer Vectorizer<K,V,C,L>) : M in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method public learnModels(datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : List<IgniteModel<Vector,Double>> in class org.apache.ignite.ml.composition.boosting.GDBLearningStrategy | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,L>] to vectorizer : Vectorizer<K,V,C,L> in method public update(mdl M, ignite Ignite, cache IgniteCache<K,V>, vectorizer Vectorizer<K,V,C,L>) : M in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Merge Parameter	[featureExtractor : IgniteBiFunction<K,V,Vector>, lbExtractor : IgniteBiFunction<K,V,Double>] to vectorizer : Vectorizer<K,V,C,Double> in method private getCentroidStat(datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>, centers List<Vector>) : CentroidStat in class org.apache.ignite.ml.knn.ann.ANNClassificationTrainer | 
                                From | 
                                To | 
                            
                            
                            
                            
                            
                            
                            
                                 | 
                                Change Variable Type	trainingSetCfg : CacheConfiguration<Integer,LabeledPoint> to trainingSetCfg : CacheConfiguration<Integer,LabeledVector<Double>> in method public main(args String...) : void in class org.apache.ignite.examples.ml.selection.cv.CrossValidationExample | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	extractor : FeatureLabelExtractor<K,V,Void> to extractor : Vectorizer<K,V,C,Void> in method public testRandomNumbersGenerator() : void in class org.apache.ignite.ml.environment.LearningEnvironmentTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	cacheMock : Map<Integer,Double[]> to cacheMock : Map<Integer,double[]> in method protected getCacheMock(vals double[][]) : Map<Integer,double[]> in class org.apache.ignite.ml.common.TrainerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	trainingSetCfg : CacheConfiguration<Integer,Point> to trainingSetCfg : CacheConfiguration<Integer,LabeledVector<Double>> in method public main(args String...) : void in class org.apache.ignite.examples.ml.tree.DecisionTreeRegressionTrainerExample | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	trainingSetCfg : CacheConfiguration<Integer,LabeledPoint> to trainingSetCfg : CacheConfiguration<Integer,LabeledVector<Double>> in method public main(args String...) : void in class org.apache.ignite.examples.ml.tree.DecisionTreeClassificationTrainerExample | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public constantTrainer(ml M) : DatasetTrainer<M,L> in class org.apache.ignite.ml.TestUtils | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	scoreCalculator : CrossValidation<DecisionTreeNode,Double,Integer,LabeledPoint> to scoreCalculator : CrossValidation<DecisionTreeNode,Double,Integer,LabeledVector<Double>> in method public main(args String...) : void in class org.apache.ignite.examples.ml.selection.cv.CrossValidationExample | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public unsafeCoerce(trainer DatasetTrainer<? extends M,L>) : DatasetTrainer<IgniteModel<I,O>,L> in class org.apache.ignite.ml.composition.CompositionUtils | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	checker : ConvergenceChecker<double[],Double> to checker : ConvergenceChecker<Integer,LabeledVector<Double>,Integer> in method public testConvergenceChecking() : void in class org.apache.ignite.ml.composition.boosting.convergence.median.MedianOfMedianConvergenceCheckerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	extractor : FeatureLabelExtractor<K,V,L1> to extractor : Vectorizer<K,V,C,L1> in method public withConvertedLabels(new2Old IgniteFunction<L1,L>) : DatasetTrainer<M,L1> in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	convCheck : ConvergenceChecker<K,V> to convCheck : ConvergenceChecker<K,V,C> in method public update(mdlToUpdate GDBTrainer.GDBModel, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : List<IgniteModel<Vector,Double>> in class org.apache.ignite.ml.composition.boosting.GDBLearningStrategy | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	cacheMock : Map<Integer,Double[]> to cacheMock : Map<Integer,double[]> in method public testNaiveBaggingLogRegression() : void in class org.apache.ignite.ml.composition.bagging.BaggingTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	sample : Map<double[],Double> to sample : Map<Integer,LabeledVector<Double>> in method public testFit() : void in class org.apache.ignite.ml.tree.randomforest.RandomForestClassifierTrainerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	xorData : Map<Integer,double[][]> to xorData : Map<Integer,LabeledVector<double[]>> in method public testUpdate() : void in class org.apache.ignite.ml.nn.MLPTrainerTest.ComponentParamTests | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	sample : Map<double[],Double> to sample : Map<Integer,LabeledVector<Double>> in method public testUpdate() : void in class org.apache.ignite.ml.tree.randomforest.RandomForestClassifierTrainerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	cacheMock : Map<Integer,Double[]> to cacheMock : Map<Integer,double[]> in method protected count(cntr IgniteTriFunction<Long,CountData,LearningEnvironment,Long>) : void in class org.apache.ignite.ml.composition.bagging.BaggingTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	xorCacheCfg : CacheConfiguration<Integer,LabeledPoint> to xorCacheCfg : CacheConfiguration<Integer,LabeledVector<double[]>> in method private xorTest(updatesStgy UpdatesStrategy<? super MultilayerPerceptron,P>) : void in class org.apache.ignite.ml.nn.MLPTrainerIntegrationTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	trainingSetCfg : CacheConfiguration<Integer,LabeledPoint> to trainingSetCfg : CacheConfiguration<Integer,LabeledVector<double[]>> in method public main(args String[]) : void in class org.apache.ignite.examples.ml.nn.MLPTrainerExample | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	xorData : Map<Integer,double[][]> to xorData : Map<Integer,LabeledVector<double[]>> in method private xorTest(updatesStgy UpdatesStrategy<? super MultilayerPerceptron,P>) : void in class org.apache.ignite.ml.nn.MLPTrainerTest.ComponentParamTests | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	pnt : LabeledPoint to pnt : LabeledVector<Double> in method public main(args String...) : void in class org.apache.ignite.examples.ml.tree.DecisionTreeClassificationTrainerExample | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	xorCache : IgniteCache<Integer,LabeledPoint> to xorCache : IgniteCache<Integer,LabeledVector<double[]>> in method private xorTest(updatesStgy UpdatesStrategy<? super MultilayerPerceptron,P>) : void in class org.apache.ignite.ml.nn.MLPTrainerIntegrationTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	convCheck : ConvergenceChecker<K,V> to convCheck : ConvergenceChecker<K,V,C> in method public update(mdlToUpdate GDBTrainer.GDBModel, datasetBuilder DatasetBuilder<K,V>, vectorizer Vectorizer<K,V,C,Double>) : List<IgniteModel<Vector,Double>> in class org.apache.ignite.ml.tree.boosting.GDBOnTreesLearningStrategy | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	datasetBuilder : LocalDatasetBuilder<double[],Double> to datasetBuilder : LocalDatasetBuilder<Integer,LabeledVector<Double>> in method public testConvergenceChecking() : void in class org.apache.ignite.ml.composition.boosting.convergence.mean.MeanAbsValueConvergenceCheckerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	checker : ConvergenceChecker<double[],Double> to checker : ConvergenceChecker<Integer,LabeledVector<Double>,Integer> in method public testConvergenceChecking() : void in class org.apache.ignite.ml.composition.boosting.convergence.mean.MeanAbsValueConvergenceCheckerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	extractor : FeatureLabelExtractor<K,V,L> to extractor : Vectorizer<K,V,C,L> in method public identityTrainer() : DatasetTrainer<IgniteModel<I,I>,L> in class org.apache.ignite.ml.trainers.DatasetTrainer | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	checker : ConvergenceChecker<double[],Double> to checker : ConvergenceChecker<Integer,LabeledVector<Double>,Integer> in method public testConvergenceCheckingWithAnomaliesInData() : void in class org.apache.ignite.ml.composition.boosting.convergence.mean.MeanAbsValueConvergenceCheckerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	datasetBuilder : LocalDatasetBuilder<double[],Double> to datasetBuilder : LocalDatasetBuilder<Integer,LabeledVector<Double>> in method public testConvergenceChecking() : void in class org.apache.ignite.ml.composition.boosting.convergence.median.MedianOfMedianConvergenceCheckerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	datasetBuilder : LocalDatasetBuilder<double[],Double> to datasetBuilder : LocalDatasetBuilder<Integer,LabeledVector<Double>> in method public testConvergenceCheckingWithAnomaliesInData() : void in class org.apache.ignite.ml.composition.boosting.convergence.mean.MeanAbsValueConvergenceCheckerTest | 
                                From | 
                                To | 
                            
                            
                            
                                 | 
                                Change Variable Type	pnt : LabeledPoint to pnt : LabeledVector<double[]> in method public main(args String[]) : void in class org.apache.ignite.examples.ml.nn.MLPTrainerExample | 
                                From | 
                                To |