|
Rename Variable model : SVMLinearBinaryClassificationModel to updatedMdl : SVMLinearBinaryClassificationModel in method public updateModel(mdl SVMLinearMultiClassClassificationModel, datasetBuilder DatasetBuilder<K,V>, featureExtractor IgniteBiFunction<K,V,Vector>, lbExtractor IgniteBiFunction<K,V,Double>) : SVMLinearMultiClassClassificationModel in class org.apache.ignite.ml.svm.SVMLinearMultiClassClassificationTrainer |
From |
To |
|
Rename Variable countOfPartitions : int to cntOfPartitions : int in method public testOfSums() : void in class org.apache.ignite.ml.tree.randomforest.data.impurity.MSEHistogramTest |
From |
To |
|
Rename Variable result : double[] to res : double[] in method public fit(datasetBuilder DatasetBuilder<K,V>, basePreprocessor IgniteBiFunction<K,V,Vector>) : MaxAbsScalerPreprocessor<K,V> in class org.apache.ignite.ml.preprocessing.maxabsscaling.MaxAbsScalerTrainer |
From |
To |
|
Rename Variable condition : DecisionTreeConditionalNode to cond : DecisionTreeConditionalNode in method private printTree(node DecisionTreeNode, depth int, builder StringBuilder, pretty boolean, isThen boolean) : void in class org.apache.ignite.ml.tree.DecisionTree |
From |
To |
|
Rename Variable result : int to res : int in method public hashCode() : int in class org.apache.ignite.ml.dataset.impl.bootstrapping.BootstrappedVector |
From |
To |
|
Rename Variable originalModel : LinearRegressionModel to originalMdl : LinearRegressionModel in method public testUpdate() : void in class org.apache.ignite.ml.regressions.linear.LinearRegressionSGDTrainerTest |
From |
To |
|
Rename Variable resultStat : NormalDistributionStatistics to resStat : NormalDistributionStatistics in method public reduceStatsTest() : void in class org.apache.ignite.ml.tree.randomforest.data.statistics.NormalDistributionStatisticsComputerTest |
From |
To |
|
Rename Variable counter : Optional<Double> to cntr : Optional<Double> in method public testAdd() : void in class org.apache.ignite.ml.dataset.feature.ObjectHistogramTest |
From |
To |
|
Rename Variable result : List<NormalDistributionStatistics> to res : List<NormalDistributionStatistics> in method public reduceStatsTest() : void in class org.apache.ignite.ml.tree.randomforest.data.statistics.NormalDistributionStatisticsComputerTest |
From |
To |
|
Rename Variable result : ObjectHistogram<Double> to res : ObjectHistogram<Double> in method public testAddHist() : void in class org.apache.ignite.ml.dataset.feature.ObjectHistogramTest |
From |
To |
|
Rename Variable countOfPartitions : int to cntOfPartitions : int in method public testOfSums() : void in class org.apache.ignite.ml.tree.randomforest.data.impurity.GiniFeatureHistogramTest |
From |
To |
|
Rename Variable projection : int[][] to prj : int[][] in method public filter(filter TreeFilter) : TreeDataIndex in class org.apache.ignite.ml.tree.data.TreeDataIndex |
From |
To |
|
Rename Variable expected : NormalDistributionStatistics[] to exp : NormalDistributionStatistics[] in method public reduceStatsTest() : void in class org.apache.ignite.ml.tree.randomforest.data.statistics.NormalDistributionStatisticsComputerTest |
From |
To |
|
Rename Variable expected : NormalDistributionStatistics[] to exp : NormalDistributionStatistics[] in method public computeStatsOnPartitionTest() : void in class org.apache.ignite.ml.tree.randomforest.data.statistics.NormalDistributionStatisticsComputerTest |
From |
To |
|
Rename Variable rightCopy : long[] to rightCp : long[] in method public calculate(data DecisionTreeData, filter TreeFilter, depth int) : StepFunction<GiniImpurityMeasure>[] in class org.apache.ignite.ml.tree.impurity.gini.GiniImpurityMeasureCalculator |
From |
To |
|
Rename Variable originalModel : LogRegressionMultiClassModel to originalMdl : LogRegressionMultiClassModel in method public testUpdate() : void in class org.apache.ignite.ml.regressions.logistic.LogRegMultiClassTrainerTest |
From |
To |
|
Rename Variable originalModel : ModelsComposition to originalMdl : ModelsComposition in method public testUpdate() : void in class org.apache.ignite.ml.tree.randomforest.RandomForestClassifierTrainerTest |
From |
To |
|
Rename Variable lblsArray : ArrayList<Double> to lblsArr : ArrayList<Double> in method protected learnLabels(builder DatasetBuilder<K,V>, featureExtractor IgniteBiFunction<K,V,Vector>, lExtractor IgniteBiFunction<K,V,Double>) : boolean in class org.apache.ignite.ml.composition.boosting.GDBBinaryClassifierTrainer |
From |
To |
|
Rename Variable value : double to val : double in method public testAdd() : void in class org.apache.ignite.ml.dataset.feature.ObjectHistogramTest |
From |
To |
|
Rename Variable originalModel : ModelsComposition to originalMdl : ModelsComposition in method public testUpdate() : void in class org.apache.ignite.ml.tree.randomforest.RandomForestRegressionTrainerTest |
From |
To |
|
Rename Variable counterMap : IgniteFunction<Double,Double> to cntrMap : IgniteFunction<Double,Double> in method public testOfSum() : void in class org.apache.ignite.ml.dataset.feature.ObjectHistogramTest |
From |
To |
|
Rename Variable originalModel : LogisticRegressionModel to originalMdl : LogisticRegressionModel in method public testUpdate() : void in class org.apache.ignite.ml.regressions.logistic.LogisticRegressionSGDTrainerTest |
From |
To |
|
Rename Variable partitionId : int to partId : int in method public testOfSums() : void in class org.apache.ignite.ml.tree.randomforest.data.impurity.GiniFeatureHistogramTest |
From |
To |
|
Rename Variable resultStat : NormalDistributionStatistics to resStat : NormalDistributionStatistics in method public computeStatsOnPartitionTest() : void in class org.apache.ignite.ml.tree.randomforest.data.statistics.NormalDistributionStatisticsComputerTest |
From |
To |
|
Rename Variable originalModel : LinearRegressionModel to originalMdl : LinearRegressionModel in method public testUpdate() : void in class org.apache.ignite.ml.regressions.linear.LinearRegressionLSQRTrainerTest |
From |
To |
|
Rename Variable result : List<NormalDistributionStatistics> to res : List<NormalDistributionStatistics> in method public computeStatsOnPartitionTest() : void in class org.apache.ignite.ml.tree.randomforest.data.statistics.NormalDistributionStatisticsComputerTest |
From |
To |
|
Rename Variable expectedStat : NormalDistributionStatistics to expStat : NormalDistributionStatistics in method public reduceStatsTest() : void in class org.apache.ignite.ml.tree.randomforest.data.statistics.NormalDistributionStatisticsComputerTest |
From |
To |
|
Rename Variable expectedStat : NormalDistributionStatistics to expStat : NormalDistributionStatistics in method public computeStatsOnPartitionTest() : void in class org.apache.ignite.ml.tree.randomforest.data.statistics.NormalDistributionStatisticsComputerTest |
From |
To |
|
Rename Variable partitionId : int to partId : int in method public testOfSums() : void in class org.apache.ignite.ml.tree.randomforest.data.impurity.MSEHistogramTest |
From |
To |
|
Rename Variable expectedData : double[][] to expData : double[][] in method public testApply() : void in class org.apache.ignite.ml.preprocessing.maxabsscaling.MaxAbsScalerPreprocessorTest |
From |
To |
|
Rename Variable index : TreeDataIndex to idx : TreeDataIndex in method public calculate(data DecisionTreeData, filter TreeFilter, depth int) : StepFunction<GiniImpurityMeasure>[] in class org.apache.ignite.ml.tree.impurity.gini.GiniImpurityMeasureCalculator |
From |
To |
|
Rename Variable index : TreeDataIndex to idx : TreeDataIndex in method public calculate(data DecisionTreeData, filter TreeFilter, depth int) : StepFunction<MSEImpurityMeasure>[] in class org.apache.ignite.ml.tree.impurity.mse.MSEImpurityMeasureCalculator |
From |
To |
|
Rename Attribute rootLogger : IgniteLogger to rootLog : IgniteLogger in class org.apache.ignite.ml.environment.logging.CustomMLLogger.Factory |
From |
To |
|
Rename Attribute copyOfOriginalLabels : double[] to copiedOriginalLabels : double[] in class org.apache.ignite.ml.tree.data.DecisionTreeData |
From |
To |
|
Rename Attribute useIndex : boolean to useIdx : boolean in class org.apache.ignite.ml.tree.impurity.mse.MSEImpurityMeasureCalculatorTest |
From |
To |
|
Rename Attribute buildIndex : boolean to buildIdx : boolean in class org.apache.ignite.ml.tree.data.DecisionTreeData |
From |
To |
|
Rename Attribute useIndex : boolean to useIdx : boolean in class org.apache.ignite.ml.tree.boosting.GDBOnTreesLearningStrategy |
From |
To |
|
Rename Attribute cntOfTrees : int to amountOfTrees : int in class org.apache.ignite.ml.tree.randomforest.RandomForestTrainer |
From |
To |
|
Rename Attribute buildIndex : boolean to buildIdx : boolean in class org.apache.ignite.ml.tree.data.DecisionTreeDataBuilder |
From |
To |
|
Rename Attribute value : double to val : double in class org.apache.ignite.ml.tree.randomforest.data.TreeNode |
From |
To |
|
Rename Attribute useIndex : boolean to useIdx : boolean in class org.apache.ignite.ml.tree.impurity.ImpurityMeasureCalculator |
From |
To |
|
Rename Attribute index : TreeDataIndex to idx : TreeDataIndex in class org.apache.ignite.ml.tree.data.TreeDataIndexTest |
From |
To |
|
Rename Attribute logger : IgniteLogger to log : IgniteLogger in class org.apache.ignite.ml.environment.logging.CustomMLLogger |
From |
To |
|
Rename Attribute index : int[][] to idx : int[][] in class org.apache.ignite.ml.tree.data.TreeDataIndex |
From |
To |
|
Rename Attribute meanLabelValue : double to meanLbVal : double in class org.apache.ignite.ml.composition.boosting.GDBLearningStrategy |
From |
To |
|
Rename Attribute useIndex : boolean to useIdx : boolean in class org.apache.ignite.ml.tree.data.DecisionTreeDataTest |
From |
To |
|
Rename Attribute className : String to clsName : String in class org.apache.ignite.ml.environment.logging.ConsoleLogger |
From |
To |
|
Rename Attribute value : double to val : double in class org.apache.ignite.ml.tree.randomforest.data.NodeSplit |
From |
To |
|
Rename Attribute useIndex : boolean to useIdx : boolean in class org.apache.ignite.ml.tree.impurity.gini.GiniImpurityMeasureCalculatorTest |
From |
To |
|
Rename Attribute result : T to res : T in class org.apache.ignite.ml.environment.parallelism.NoParallelismStrategy.Stub |
From |
To |
|
Rename Attribute useIndex : int to useIdx : int in class org.apache.ignite.ml.tree.DecisionTreeRegressionTrainerTest |
From |
To |
|
Rename Parameter expectedBuckets : int[] to expBuckets : int[] in method private testBuckets(hist ObjectHistogram<Double>, expBuckets int[], expCounters int[]) : void in class org.apache.ignite.ml.dataset.feature.ObjectHistogramTest |
From |
To |
|
Rename Parameter lastLearnedModel : MultilayerPerceptron to lastLearnedMdl : MultilayerPerceptron in method protected updateModel(lastLearnedMdl MultilayerPerceptron, datasetBuilder DatasetBuilder<K,V>, featureExtractor IgniteBiFunction<K,V,Vector>, lbExtractor IgniteBiFunction<K,V,double[]>) : MultilayerPerceptron in class org.apache.ignite.ml.nn.MLPTrainer |
From |
To |
|
Rename Parameter expectedCounters : int[] to expCounters : int[] in method private testBuckets(hist ObjectHistogram<Double>, expBuckets int[], expCounters int[]) : void in class org.apache.ignite.ml.dataset.feature.ObjectHistogramTest |
From |
To |
|
Rename Parameter value : Double to val : Double in method private computeBucket(val Double) : int in class org.apache.ignite.ml.dataset.feature.ObjectHistogramTest |
From |
To |
|
Rename Parameter forClass : Class<T> to forCls : Class<T> in method public logger(forCls Class<T>) : MLLogger in class org.apache.ignite.ml.environment.LearningEnvironment |
From |
To |
|
Rename Parameter useIndex : boolean to useIdx : boolean in method public ImpurityMeasureCalculator(useIdx boolean) in class org.apache.ignite.ml.tree.impurity.ImpurityMeasureCalculator |
From |
To |
|
Rename Parameter useIndex : boolean to useIdx : boolean in method public withUseIndex(useIdx boolean) : DecisionTreeClassificationTrainer in class org.apache.ignite.ml.tree.DecisionTreeClassificationTrainer |
From |
To |
|
Rename Parameter value : double to val : double in method public setVal(val double) : void in class org.apache.ignite.ml.tree.randomforest.data.TreeNode |
From |
To |
|
Rename Parameter cntOfTrees : int to amountOfTrees : int in method public withAmountOfTrees(amountOfTrees int) : T in class org.apache.ignite.ml.tree.randomforest.RandomForestTrainer |
From |
To |
|
Rename Parameter value : double to val : double in method public toConditional(featureId int, val double) : List<TreeNode> in class org.apache.ignite.ml.tree.randomforest.data.TreeNode |
From |
To |
|
Rename Parameter logger : IgniteLogger to log : IgniteLogger in method private CustomMLLogger(log IgniteLogger) in class org.apache.ignite.ml.environment.logging.CustomMLLogger |
From |
To |
|
Rename Parameter rootLogger : IgniteLogger to rootLog : IgniteLogger in method public Factory(rootLog IgniteLogger) in class org.apache.ignite.ml.environment.logging.CustomMLLogger.Factory |
From |
To |
|
Rename Parameter useIndex : boolean to useIdx : boolean in method public MSEImpurityMeasureCalculator(useIdx boolean) in class org.apache.ignite.ml.tree.impurity.mse.MSEImpurityMeasureCalculator |
From |
To |
|
Rename Parameter useIndex : boolean to useIdx : boolean in method public GiniImpurityMeasureCalculator(lbEncoder Map<Double,Integer>, useIdx boolean) in class org.apache.ignite.ml.tree.impurity.gini.GiniImpurityMeasureCalculator |
From |
To |
|
Rename Parameter model : KNNClassificationModel to mdl : KNNClassificationModel in method public copyStateFrom(mdl KNNClassificationModel) : void in class org.apache.ignite.ml.knn.classification.KNNClassificationModel |
From |
To |
|
Rename Parameter expected : Integer[] to exp : Integer[] in method package checkBucketIds(bucketIdsSet Set<Integer>, exp Integer[]) : void in class org.apache.ignite.ml.tree.randomforest.data.impurity.ImpurityHistogramTest |
From |
To |
|
Rename Parameter indexProj : int[][] to idxProj : int[][] in method private TreeDataIndex(idxProj int[][], features double[][], labels double[]) in class org.apache.ignite.ml.tree.data.TreeDataIndex |
From |
To |
|
Rename Parameter rootLogger : IgniteLogger to rootLog : IgniteLogger in method public factory(rootLog IgniteLogger) : Factory in class org.apache.ignite.ml.environment.logging.CustomMLLogger |
From |
To |
|
Rename Parameter meanLabelValue : double to meanLbVal : double in method public withMeanLabelValue(meanLbVal double) : GDBLearningStrategy in class org.apache.ignite.ml.composition.boosting.GDBLearningStrategy |
From |
To |
|
Rename Parameter expected : T to exp : T in method package checkSums(exp T, partitions List<T>) : void in class org.apache.ignite.ml.tree.randomforest.data.impurity.ImpurityHistogramTest |
From |
To |
|
Rename Parameter expected : double[] to exp : double[] in method package checkCounters(hist ObjectHistogram<BootstrappedVector>, exp double[]) : void in class org.apache.ignite.ml.tree.randomforest.data.impurity.ImpurityHistogramTest |
From |
To |
|
Rename Parameter value : double to val : double in method public NodeSplit(featureId int, val double, impurity double) in class org.apache.ignite.ml.tree.randomforest.data.NodeSplit |
From |
To |
|
Rename Parameter value : double to val : double in method public toLeaf(val double) : void in class org.apache.ignite.ml.tree.randomforest.data.TreeNode |
From |
To |
|
Rename Parameter result : T to res : T in method public Stub(res T) in class org.apache.ignite.ml.environment.parallelism.NoParallelismStrategy.Stub |
From |
To |
|
Rename Parameter value : String to val : String in method public addField(name String, val String) : ModelTrace in class org.apache.ignite.ml.util.ModelTrace |
From |
To |
|
Rename Parameter useIndex : boolean to useIdx : boolean in method public GDBOnTreesLearningStrategy(useIdx boolean) in class org.apache.ignite.ml.tree.boosting.GDBOnTreesLearningStrategy |
From |
To |
|
Rename Parameter copyOfOriginalLabels : double[] to copiedOriginalLabels : double[] in method public setCopiedOriginalLabels(copiedOriginalLabels double[]) : void in class org.apache.ignite.ml.tree.data.DecisionTreeData |
From |
To |